Обратная связь
gordon0030@yandex.ru
Александр Гордон
 
  2003/Март
 
  Архив выпусков | Участники
 

Поиски черных дыр

  № 233 Дата выхода в эфир 25.03.2003 Хронометраж 49:24
 
С Стенограмма эфира

Черная дыра — это область пространства-времени, в которой гравитационное поле столь сильно, что даже свет, самый быстрый переносчик энергии, не может вырваться из нее. Предсказываемые свойства черных дыр столь фантастичны, что в их существование верится с трудом. Однако сейчас открыто свыше ста массивных и чрезвычайно компактных объектов, свойства которых очень похожи на свойства черных дыр. О поисках черных дыр во Вселенной — физики Дмитрий Гальцов и Анатолий Черепащук.

Участники:

Гальцов Дмитрий Владимирович — доктор физико-математических наук, профессор физического факультета МГУ им. М. В. Ломоносова

Черепащук Анатолий Михайлович — член-корреспондент РАН, доктор физико-математических наук, профессор, зав. кафедрой астрофизики и звездной астрономии физического факультета Московского государственного университета, директор Государственного астрономического института им. П. К. Штернберга МГУ


Материалы к программе:

Из статьи: ЧЕРЕПАЩУК. А. М. ЧЕРНЫЕ ДЫРЫ В ДВОЙНЫХ ЗВЕЗДНЫХ СИСТЕМАХ.

ВВЕДЕНИЕ. Как известно, черной дырой называется область пространства-времени, в которой гравитационное поле настолько сильно, что даже свет не может покинуть эту область.

Общая теория относительности А. Эйнштейна предсказывает удивительные свойства черных дыр, из которых важнейшее — наличие у черной дыры горизонта событий. Для невращающейся черной дыры радиус горизонта событий совпадает с гравитационным радиусом. На горизонте событий для внешнего наблюдателя ход времени останавливается. Космический корабль, посланный к черной дыре, с точки зрения далекого наблюдателя, никогда не пересечет горизонт событий, а будет непрерывно замедляться по мере приближения к нему. Все, что происходит под горизонтом событий, внутри черной дыры, внешний наблюдатель не видит. Космонавт в своем корабле в принципе способен проникнуть под горизонт событий, но передать какую-либо информацию внешнему наблюдателю он не сможет. При этом космонавт, свободно падающий под горизонтом событий, вероятно, увидит другую Вселенную и даже свое будущее. Связано это с тем, что внутри черной дыры пространственная и временная координаты меняются местами и путешествие в пространстве здесь заменяется путешествием во времени. Еще более необычны свойства вращающихся черных дыр. У них горизонт событий имеет меньший радиус, и погружен он внутрь эргосферы — области пространства-времени, в которой тела должны непрерывно двигаться, подхваченные вихревым гравитационным полем вращающейся черной дыры.

Столь необычные свойства черных дыр многим кажутся просто фантастическими, поэтому существование черных дыр в природе часто ставится под сомнение. Однако, забегая вперед, отметим, что, согласно новейшим наблюдательным данным, черные дыры действительно существуют и им присущи удивительные свойства.

КАК ОБРАЗУЮТСЯ ЧЕРНЫЕ ДЫРЫ. Известно, что если масса ядра звезды, претерпевшего изменения химического состава из-за термоядерных реакций и состоящего в основном из элементов группы железа, превышает 1,4 солнечной массы M, но не превосходит трех солнечных масс, то в конце ядерной эволюции звезды происходит коллапс (быстрое сжатие) ядра, в результате которого внешняя оболочка звезды, не затронутая термоядерными превращениями, сбрасывается, что приводит к явлению вспышки сверхновой звезды. Это приводит к формированию нейтронной звезды, в которой силам гравитационного притяжения противодействует градиент давления вырожденного нейтронного вещества. Огромные силы давления вырожденного нейтронного вещества обусловлены тем, что нейтроны обладают полуцелым спином и подчиняются принципу Паули, согласно которому в данном энергетическом состоянии может находиться только один нейтрон.

При сжатии ядра звезды на поздней стадии эволюции температура поднимается до гигантских значений — порядка миллиарда кельвинов, поэтому ядра атомов разваливаются на протоны и нейтроны. Протоны поглощают электроны, превращаются в нейтроны и испускают нейтрино. Нейтроны же, согласно квантово-механическому принципу Паули, запрещающему им находиться в одинаковых состояниях, начинают при сильном сжатии эффективно отталкиваться друг от друга. В случае массы коллапсирующего ядра звезды меньше 3M, скорости нейтронов значительно меньше скорости света и упругость вещества, обусловленная в основном эффективным отталкиванием нейтронов, может уравновесить силы гравитации и привести к образованию устойчивых нейтронных звезд. В случае массивных ядер звезд скорости нейтронов велики, силы отталкивания между ними не могут уравновесить силы гравитации. В этом случае образующаяся нейтронная звезда остывая коллапсирует, согласно существующим представлениям, в черную дыру. Поскольку при образовании нейтронной звезды радиус звезды уменьшается от 106 до 10 км, из условия сохранения магнитного потока следует, что магнитное поле нейтронной звезды радиусом 10 км может достигать очень большой величины — порядка 1012 Гс. Радиус нейтронной звезды порядка 10 км, плотность вещества достигает миллиарда тонн в кубическом сантиметре.

Хорошо известные радиопульсары и рентгеновские пульсары как раз и представляют собой нейтронные звезды, причем число известных радиопульсаров достигает 700. Радиопульсары наблюдаются как источники строго периодических импульсов радоизлучения, что связано с переработкой энергии быстрого вращения звезды в направленное радиоизлучение через посредство сильного магнитного поля. Рентгеновские пульсары светят за счет аккреции вещества в тесных двойных звездных системах: сильное магнитное поле нейтронной звезды направляет плазму на магнитные полюсы, где она сталкивается с поверхностью нейтронной звезды и разогревается в ударной волне до температур в десятки и сотни миллионов градусов. Это приводит к излучению рентгеновских квантов. Поскольку ось магнитного диполя не совпадает с осью вращения нейтронной звезды, рентгеновские пятна (их называют аккреционными колонками) при вращении нейтронной звезды то видны для земного наблюдателя, то экранируются телом нейтронной звезды, что приводит к эффекту маяка и феномену рентгеновского пульсара — строго периодической переменности рентгеновского излучения на временах от долей секунды до тысяч секунд. Периодические пульсации радио- или рентгеновского излучения говорят о том, что у нейтронной звезды есть сильное магнитное поле (~1012 Гс), твердая поверхность и быстрое вращение (периоды радиопульсаров достигают миллисекунд времени). У черной дыры строго периодических пульсаций излучения ожидать не приходится, поскольку, согласно предсказанию общей теории относительности (ОТО) Эйнштейна, описывающей сильные гравитационные поля, черная дыра не имеет ни твердой поверхности, ни сильного магнитного поля.

Для звезд, массы железных ядер которых в конце эволюции превышают три солнечных, ОТО предсказывает неограниченное сжатие ядра (релятивистский коллапс) с образованием черной дыры. Это объясняется тем, что силы гравитации, стремящиеся сжать звезду, определяются плотностью энергии, а при громадных плотностях вещества, достигаемых при сжатии ядра звезды (порядка миллиарда тонн в кубическом сантиметре), главный вклад в плотность энергии вносит уже не энергия покоя частиц, а энергия их движения и взаимодействия. Получается, что давление вещества при больших плотностях как бы само «весит»: чем больше давление, тем больше плотность энергии и, следовательно, силы гравитации, стремящиеся сжать вещество. Кроме того, при сильных гравитационных полях, согласно ОТО, становятся принципиально важными эффекты искривления пространства-времени, что также способствует неограниченному сжатию ядра звезды.

Черные дыры с очень большими массами (до миллиардов солнечных масс), по-видимому, существуют в ядрах галактик, и в последние годы в наблюдательном исследовании сверхмассивных черных дыр наметился существенный прогресс в связи с использованием космического телескопа им. Хаббла и применения методов радиоинтерферометрии со сверхдлинными базами. Кроме того, теория предсказывает возможность существования первичных черных дыр, образовавшихся в момент образования Вселенной. Мы ограничимся рассмотрением лишь черных дыр звездной массы, образовавшихся на конечных этапах эволюции массивных (с массами в десятки солнечных) звезд.

МЕТОДЫ ОПРЕДЕЛЕНИЯ МАСС ЧЕРНЫХ ДЫР. Известно, что массу звезды можно измерить, если она входит в двойную систему. Наблюдая движение звезд — компонент двойной системы и применяя законы Кеплера, вытекающие из закона тяготения Ньютона, можно измерить массы звезд. При этом, поскольку размеры орбиты двойной системы в миллионы раз больше гравитационных радиусов компонент, для определения масс звезд, в том числе и масс нейтронных звезд и черных дыр в двойных системах, вполне достаточно использования закона тяготения Ньютона. Мы не рассматриваем здесь случай двойных радиопульсаров, где громадная точность определения моментов прихода радиоимпульсов позволяет наблюдать релятивистские эффекты (обусловленные ОТО) в движении пульсара, и по ним определять с высокой точностью массы пульсаров, и даже наблюдать вековое укорочение орбитального периода двойной системы, обусловленное излучением потока гравитационных волн.

Оптическая звезда в двойной системе является не только пробным телом в гравитационном поле черной дыры, позволяющим измерить ее массу, но также своеобразным донором, поставляющим вещество на соседний релятивистский объект (нейтронную звезду или черную дыру). Аккреция этого вещества на релятивистский объект приводит к разогреву плазмы до температур в десятки и сотни миллионов градусов и к появлению мощного рентгеновского источника. Теоретическое предсказание мощного энерговыделения при несферической аккреции вещества на черную дыру было сделано в 1964 году Я. Б. Зельдовичем и Е. Е. Салпитером. Теория дисковой аккреции вещества на релятивистский объект в тесной двойной звездной системе развита в начале 70-х годов в работах Н. И. Шакуры и Р. А. Сюняева, Дж. Прингла и М. Риса, И. Д. Новикова и К. С. Торна.

К настоящему времени с бортов специализированных спутников открыты десятки тысяч компактных рентгеновских источников, большинство из которых представляют собой рентгеновские двойные системы — тесные двойные системы, состоящие из нормальной оптической звезды типа Солнца и релятивистского объекта, находящегося в режиме аккреции вещества. Космические рентгеновские и наземные оптические наблюдения в данном случае прекрасно дополняют друг друга: наличие мощного рентгеновского источника (со светимостью, в сотни тысяч раз превышающей болометрическую светимость Солнца) указывает на присутствие в двойной системе массивного объекта малых размеров (менее радиуса Земли), а спектральные и фотометрические наблюдения оптического спутника позволяют измерить массу релятивистского объекта. Если масса релятивистского объекта превышает три солнечных, его можно считать кандидатом в черные дыры. К настоящему времени число таких кандидатов в черные дыры в двойных системах с надежно измеренными массами достигло десяти и благодаря успехам рентгеновской и оптической астрономии непрерывно возрастает. Постепенно выявляется замечательный факт: ни один из известных десяти кандидатов в черные дыры не является рентгеновским пульсаром, то есть кандидаты в черные дыры отличаются от нейтронных звезд не только большими массами, но и наблюдательными проявлениями в полном соответствии с предсказаниями ОТО (!).

Опишем, как можно определить массу черной дыры в рентгеновской двойной системе. Наблюдения доплеровских смещений линий в спектре оптической звезды, вызванных ее орбитальным движением, позволяют построить кривую лучевых скоростей этой звезды, то есть зависимость от времени проекции вектора полной скорости звезды на луч зрения. Период, амплитуда и форма кривой лучевых скоростей определяют функцию масс оптической звезды.

Модель рентгеновской двойной системы, используемая при интерпретации ее оптической кривой блеска, учитывает четыре типа оптической переменности: эффект эллипсоидальности оптической звезды, связанный с приливной деформацией формы оптической звезды в гравитационном поле релятивистского объекта, эффект отражения, точнее, прогрева поверхности оптической звезды мощным рентгеновским излучением аккрецирующего релятивистского объекта, затмения компонент и прецессию аккреционного диска, окружающего релятивистский объект (аккреционный диск может быть наклонен к плоскости орбиты и медленно прецессировать). Эффекты эллипсоидальности и отражения были впервые обнаружены и использованы для оценки параметров в 1972 году В. М. Лютым, Р. А. Сюняевым и автором данной статьи в рентгеновских двойных системах Лебедь Х-1 и Геркулес Х-1. Эти эффекты оказались типичными в оптических проявлениях рентгеновских двойных систем и помогают осуществлять надежную оптическою идентификацию рентгеновских двойных систем: совпадение периодов и фаз оптической и рентгеновской переменности или совпадение рентгеновской и оптической вспышек доказывает достоверность отождествления. В настоящее время оптическая переменность рентгеновских двойных систем, обусловленная в основном эффектом эллипсоидальности оптической звезды, эффективно используется при определении масс черных дыр в транзиентных рентгеновских двойных системах (рентгеновских Новых). Примеры кривых блеска, лучевых скоростей, а также компьютерная модель рентгеновской системы приведены на рис. 1–4.

КАК ОТЛИЧИТЬ ЧЕРНЫЕ ДЫРЫ ОТ НЕЙТРОННЫХ ЗВЕЗД. Как уже отмечалось, аккрецирующая черная дыра не должна проявлять себя как рентгеновский пульсар. У нее может наблюдаться лишь иррегулярная переменность рентгеновского излучения с характерными временами

И действительно, в рентгеновской двойной системе Лебедь Х-1, содержащей черную дыру с массой около десяти солнечных, в состоянии, когда рентгеновская светимость понижена, а рентгеновский спектр жесткий и степенной, наблюдается быстрая иррегулярная переменность рентгеновского потока на временах порядка миллисекунды. Наблюдения, выполненные с бортов современных рентгеновских обсерваторий, таких, как ГИНГА, МИР-КВАНТ, ГРАНАТ, АСКА, показали, что рентгеновские спектры аккрецирующих черных дыр систематически более жесткие, чем спектры аккрецирующих нейтронных звезд, и простираются до энергий в несколько мегаэлектрон-вольт.

Как уже отмечалось, аккрецирующая нейтронная звезда может проявлять себя как рентгеновский пульсар. Однако, если нейтронная звезда обладает слабым магнитным полем (напряженностью менее 1010 Гс) или если ее ось вращения неудачно ориентирована относительно земного наблюдателя, при аккреции на такую нейтронную звезду могут не наблюдаться регулярные пульсации рентгеновского излучения. Поэтому отсутствие строго периодических пульсаций рентгеновского излучения — это лишь необходимый, но не достаточный признак черной дыры. В то же время при слабом магнитном поле нейтронной звезды и несильном темпе аккреции вещества на ее поверхности могут происходить термоядерные взрывы накопленного вещества, приводящие к явлению рентгеновского барстера I типа — коротким (длительностью порядка 1–10 с) и мощным вспышкам интенсивности рентгеновского излучения, что также является характерным признаком аккрецирующей нейтронной звезды, обладающей твердой поверхностью. Поскольку черная дыра не обладает твердой поверхностью, аккреция вещества на нее не должна приводить к феномену рентгеновского барстера I типа. Разумеется, отсутствие этого феномена также является лишь необходимым критерием наличия черной дыры. Таким образом, мы можем сформулировать важнейшие признаки аккрецирующей черной дыры: это мощное рентгеновское излучение, большая масса (более трех солнечных), отсутствие феноменов рентгеновского пульсара или рентгеновского барстера I типа. При этом вопрос о надежном определении массы релятивистского объекта в рентгеновской двойной системе является решающим при идентификации его с черной дырой.

НОВЕЙШИЕ ДАННЫЕ. К настоящему времени в двойных системах измерены массы шести рентгеновских и пяти радиопульсаров. Оказалось, что во всех случаях, когда удается надежно определить массу рентгеновского или радиопульсара (то есть нейтронной звезды), она не превосходит трех солнечных масс — теоретический верхний предел для массы нейтронной звезды, предсказываемый ОТО (!). Среднее значение массы нейтронной звезды, полученное для одиннадцати объектов, составляет около 1,4 солнечной массы и прекрасно согласуется с современной теорией поздних стадий эволюции массивных звезд.

Перейдем теперь к наиболее интригующему вопросу о том, как обстоят дела с массивными (с массами более трех солнечных) рентгеновскими источниками. К настоящему времени известно десять рентгеновских двойных систем с массивными рентгеновскими источниками.

Надежность определения масс mx черных дыр в этих системах не вызывает сомнения, поскольку модель двойной системы в данном случае уверенно обоснована тем фактом, что в моменты минимумов блеска лучевая скорость оптической звезды совпадает с лучевой скоростью центра масс системы. Следовательно, изменения со временем лучевой скорости оптической звезды связаны с ее орбитальным движением, а не с пульсациями звезды или движением газовых потоков в системе. Применение мощных методов определения масс, развитых для тесных двойных систем, позволяет дать надежные оценки масс черных дыр.

Строгие скептики придумали для рентгеновских двойных систем с большой функцией масс модель тройной системы. В этой модели рентгеновский источник — это аккрецирующая нейтронная звезда, а большая функция масс связана с движением оптической звезды вокруг третьей массивной звезды. Специальные тщательные спектроскопические исследования не выявили признаков тройственности ни у одной из десяти описанных выше рентгеновских двойных систем. Кроме того, в системах, где масса оптической звезды мала (менее одной-двух солнечных масс), модель тройной системы неприемлема уже потому, что третья звезда должна иметь массу в несколько солнечных и на ее ярком фоне невозможно было бы наблюдать линии поглощения слабой маломассивной оптической звезды. Таким образом, к настоящему времени проблема черных дыр встала на прочный наблюдательный базис.

Спутниками рентгеновских пульсаров и черных дыр в двойных системах являются оптические звезды спектральных классов M–O.

В тех случаях, когда спутником является массивная горячая оптическая звезда спектрального класса O–B (системы Cyg X-1, LMC X-3, LMC X-1), рентгеновский источник является квазистационарным. Во всех системах, у которых спутники — маломассивные холодные звезды поздних спектральных классов (всего семь таких систем), рентгеновский источник является транзиентным (рентгеновской Новой): в основном, спокойном состоянии его рентгеновская светимость мала (менее 1033 эрг/с), однако раз в несколько десятков лет наблюдается явление рентгеновской Новой, когда рентгеновская светимость увеличивается в миллионы раз и затем с характерным временем порядка нескольких месяцев спадает до ненаблюдаемого уровня. Эту замечательную корреляцию между характером нестационарности рентгеновского источника и массой спутника — оптической звезды нужно обязательно учитывать при построении теории нестационарной дисковой аккреции на черные дыры.

Следует подчеркнуть очень важный наблюдательный факт: ни у одного из десяти массивных (с массой более трех солнечных) рентгеновских источников — кандидатов в черные дыры не обнаружено феноменов рентгеновского пульсара или рентгеновского барстера I типа, характерных для аккрецирующих нейтронных звезд. Этот факт имеет фундаментальное значение и может рассматриваться как наблюдательный аргумент (но, разумеется, еще не как окончательное доказательство) в пользу того, что наблюдаемые десять кандидатов в черные дыры действительно являются черными дырами в смысле ОТО.

ЗАКЛЮЧЕНИЕ. Мы описали астрономические методы и результаты определения масс черных дыр в рентгеновских двойных системах, основанные главным образом на их оптических исследованиях. Уже сейчас на основании надежных определений масс большого числа нейтронных звезд и черных дыр можно заключить, что наблюдения релятивистских объектов в двойных звездных системах согласуются с предсказаниями ОТО. Новейшие наблюдательные данные по черным дырам, изложенные выше, имеют принципиальное значение для фундаментальной физики и релятивистской астрофизики, а также для теории внутреннего строения звезд и звездной эволюции. Без преувеличения можно сказать, что в проблеме поиска и наблюдательных исследований черных дыр за последние годы произошла тихая революция и проблема черных дыр во Вселенной из чисто умозрительной превратилась в наблюдательную. Это означает качественно новый этап в исследованиях черных дыр и их удивительных свойств, что в ближайшем будущем должно привести к значительному прогрессу в этой увлекательной области исследований.

Из статьи: А. М. ЧЕРЕПАЩУК. СВЕРХМАССИВНЫЕ ЧЕРНЫЕ ДЫРЫ В ЯДРАХ ГАЛАКТИК.

ВВЕДЕНИЕ. Ядра галактик всегда привлекали особое внимание ученых. В последние годы выяснилось, что ядра галактик содержат сверхмассивные компактные объекты, по всей вероятности черные дыры. О новейших результатах измерения масс и размеров галактических ядер, позволяющих идентифицировать их с черными дырами, мы расскажем в статье.

Как известно, под черной дырой понимается область пространства-времени, в которой гравитационное поле настолько сильно, что даже свет не может уйти из нее на бесконечность. Черные дыры предсказываются общей теорией относительности (ОТО) А. Эйнштейна. Они обладают удивительными свойствами, важнейшее из которых — наличие у черной дыры горизонта событий, на котором с точки зрения далекого наблюдателя ход времени останавливается.

СВОЙСТВА ЯДЕР ГАЛАКТИК. Галактики в большинстве случаев имеют в центральных частях компактные сгущения звезд и газа, которые принято называть ядрами. Обычно ядра выделяются в спиральных галактиках и трудноразличимы в неправильных галактиках (например, Магеллановых облаках). Среди галактик выделяется сравнительно немногочисленная (~1% от общего числа) группа галактик с активными ядрами. В активных ядрах галактик наблюдаются мощные нестационарные процессы, приводящие к высокой светимости ядер в рентгеновском, ультрафиолетовом, оптическом, инфракрасном и радиодиапазонах. Хотя галактики с активными ядрами сравнительно малочисленны, их изучение принципиально важно для выяснения природы галактических ядер.

Галактики с активными ядрами принято разделять на четыре основных типа: сейфертовские галактики, радиогалактики, лацертиды и квазары. Сейфертовские галактики в большинстве случаев представляют собой спиральные галактики с яркими ядрами, светящимися в непрерывном спектре, а также в сильных и широких линиях излучения водорода, гелия, азота и других элементов. Радиогалактики — в большинстве своем эллиптические галактики, обладающие мощным радиоизлучением, иногда превышающим по мощности их оптическое излучение. Лацертиды, получившие свое название от объекта BL Лацерты, характеризуемые сильной оптической переменностью амплитудой до пяти звездных величин, переменным радиоизлучением и значительной поляризацией излучения. Наконец, знаменитые квазары также представляют собой очень активные ядра весьма удаленных галактик с красным смещением от z = 0,158 (соответствующее расстояние 630 Мпк, или около 2 млрд световых лет) для ЗС273 до z = 4 (расстояние во многие миллиарды световых лет). Квазары — самые мощные по стационарному излучению объекты во Вселенной. Полная светимость квазаров, включая радио-, инфракрасный, оптический, ультрафиолетовый, рентгеновский и гамма-диапазоны, достигает 1047–1048 эрг/с, что на три-четыре порядка превышает светимость родительской галактики.

Все галактики с активными ядрами обладают переменностью оптического излучения их ядер на временах от нескольких суток до многих лет. Ввиду малого объема, в котором выделяется гигантская энергия, требуется привлечение новых механизмов энерговыделения. Одним из таких механизмов принято считать аккрецию (то есть выпадение) вещества звезд и газа галактики на сверхмассивную черную дыру, расположенную в ядре галактики. Поскольку эффективность энерговыделения при аккреции на два порядка выше, чем при ядерных реакциях, механизм аккреции на черную дыру в последние годы наиболее часто применяется при объяснении гигантской светимости квазаров и ядер активных галактик. У многих ядер активных галактик и квазаров наблюдаются сильно коллимированные выбросы вещества, двигающегося со скоростью, близкой к скорости света, которые принято называть джетами. Размеры джетов достигают десятков килопарсек, что больше размеров галактик. Принято считать, что происхождение джетов связано с магнитогидродинамическими процессами во внутренних частях аккреционного диска (то есть диска из выпадающего вещества) вокруг сверхмассивной черной дыры или с быстрым вращением самой черной дыры. Вращение и магнитное поле приводят к формированию сильных электрических полей, в которых заряженные частицы аккрецирующей плазмы ускоряются до релятивистских скоростей.

Таким образом, наблюдения квазаров и других галактик с активными ядрами привели ученых к выводу о возможном существовании сверхмассивных черных дыр в ядрах галактик. Для надежной идентификации ядер галактик со сверхмассивными черными дырами необходимо, как и в случае черных дыр звездной массы, дать оценки их масс и характерных размеров. Рассмотрим различные методы определения важнейших параметров ядер галактик.

ОПРЕДЕЛЕНИЕ МАСС ЯДЕР АКТИВНЫХ ГАЛАКТИК. При определении масс ядер активных галактик используется тот факт, что светимость этих ядер велика, а в их спектрах наблюдаются мощные и широкие линии излучения.

Поскольку изучение переменности эмиссионных линий и эффекта запаздывания позволяет зондировать самые центральные области галактического ядра, в последние годы была развернута широкая международная программа изучения спектральной переменности активных ядер галактик как с помощью крупнейших наземных телескопов, так и с борта Космического телескопа им. Э. Хаббла.

ОПРЕДЕЛЕНИЕ МАСС «СПОКОЙНЫХ» ЯДЕР ПО КИНЕМАТИКЕ ОКРУЖАЮЩИХ ИХ ЗВЕЗД. В описанном выше случае активных ядер галактик массы ядер определяются по светимости и переменности самого ядра. Мощное излучение активного ядра не позволяет исследовать распределение звезд и их скоростей вблизи ядра. Между тем, как отмечалось выше, галактики с активными ядрами составляют лишь малую долю (~1%) от общего числа галактик. В подавляющем большинстве случаев ядро галактики слабо выделяется на фоне соседних звезд. В этом случае появляется возможность изучать распределение и движение звезд вблизи ядра. Это дает возможность получить достаточно надежную динамическую оценку его массы.

Из спектральных и фотометрических наблюдений с высоким угловым разрешением можно найти распределение яркости I(r) по поверхности галактики и распределение скоростей движения звезд (по доплеровским смещениям и уширению линий поглощения в суммарном спектре звезд галактики). Тогда из решения так называемого бесстолкновительного уравнения Больцмана для распределения звезд в коллективном гравитационном поле получается выражение для массы М(r) внутри радиуса r от центра галактики. Таким образом можно оценить массу ядра и, что особенно важно, определить отношение массы к светимости (в солнечных единицах) как функцию r. Для внеядерных областей галактик величина M / L = 1–10 (в солнечных единицах). В то же время для ядерных областей величина M / L может составлять многие десятки и сотни, что свидетельствует об избытке темной массы по сравнению со звездной компонентой. Это является дополнительным наблюдательным аргументом в пользу наличия черной дыры в ядре. Таким методом оценены массы примерно двух десятков ядер нормальных галактик.

Наиболее надежные и точные оценки масс ядер галактик получаются из прямых наблюдений вращательных скоростей газа вблизи ядра или измерений смещений индивидуальных звезд, обусловленных их движением вокруг ядра.

ОПРЕДЕЛЕНИЕ МАССЫ ЯДРА ПО НАБЛЮДАЕМОЙ СКОРОСТИ ВРАЩЕНИЯ ОКРУЖАЮЩЕГО ЕГО ГАЗА. Наиболее надежные определения масс компактных объектов в ядрах галактик выполнены в последние годы с борта Космического телескопа им. Э. Хаббла и с помощью метода наземной радиоинтерферометрии со сверхдлинной базой (VLBI).

Еще более впечатляющие результаты были получены в 1995 году группой Дж. Морана (США) по определению массы ядра галактики NGС 4258 (также имеющей релятивистский джет). Используя глобальную сеть наземных радиотелескопов в режиме гигантского интерферометра, авторы изучили распределение компактных мазерных источников, излучающих очень узкие и мощные спектральные линии в ближайших окрестностях ядра этой галактики с очень высоким спектральным и угловым разрешением. Оказалось, что 17 обнаруженных компактных мазерных источников, излучающих чрезвычайно узкие и мощные линии водяного пара, расположены в дискообразной структуре, видимой почти с ребра. Семнадцать точечных мазерных источников лежат в плоскости диска, вращающегося вокруг ядра по кеплеровскому закону. Масса ядра для NGC 4258 более чем на 13 порядков превышает среднюю плотность звезд вне ядерной области галактики!

Оба приведенных примера весьма показательны. Они свидетельствуют о том, что в ядрах галактик имеются сверхмассивные компактные темные тела, которые по всем наблюдательным признакам, скорее всего, являются черными дырами. Но самые убедительные свидетельства в пользу наличия черных дыр в ядрах галактик были получены в последние годы при изучении движения отдельных звезд вблизи ядра нашей Галактики.

ОПРЕДЕЛЕНИЕ МАССЫ ЯДРА НАШЕЙ ГАЛАКТИКИ ПО ДВИЖЕНИЮ ИНДИВИДУАЛЬНЫХ ЗВЕЗД. В 1996 году была опубликована работа германских астрономов А. Экарта и Р. Генцеля, которые в течение трех лет наблюдали с высоким угловым разрешением центр нашей Галактики в инфракрасном диапазоне (ядро Галактики скрыто для земного наблюдателя мощным слоем межзвездной пыли, и только в инфракрасном диапазоне, для которого пыль прозрачна, можно непосредственно увидеть звезды вблизи ядра). В результате за три года наблюдений авторы смогли непосредственно увидеть и измерить перемещения звезд вблизи ядра Галактики, скорости которых достигали многих сотен км/с.

Была измерена дисперсия скоростей собственных движений звезд как функция их расстояния до ядра Галактики, которая прекрасно согласуется с дисперсией лучевых скоростей звезд, измеренных спектральным методом. Это доказывает, что распределение скоростей звезд вблизи ядра изотропно, что прекрасно согласуется с теорией. Сравнение наблюдаемого распределения дисперсии скоростей звезд вблизи ядра c теоретическим позволяет дать надежную оценку массы центрального ядра Галактики. Оцененный при этом верхний предел на радиус ядра Галактики как и в случае NGC 4258, на 13 порядков выше средней плотности неядерных областей Галактики.

Суммируя изложенное, можно заключить, что для 41 галактики к настоящему времени известны надежные оценки масс и характерных размеров ядер. Эти оценки делают весьма вероятной гипотезу о том, что в ядрах галактик находятся сверхмассивные черные дыры.

ЗАКЛЮЧЕНИЕ. Как и в случае черных дыр звездной массы, мы не можем считать окончательно доказанным существование сверхмассивных черных дыр в ядрах галактик, поскольку для такого доказательства требуется выполнение не только необходимых, но и достаточных критериев, предоставляемых ОТО. А. Эйнштейна. Существование черных дыр можно было бы считать доказанным, если бы из наблюдений удалось показать, что радиус массивного тела равен его гравитационному радиусу. Как отмечалось выше, современные оценки верхних пределов для характерных размеров компактных объектов примерно на порядок больше, чем величины их гравитационных радиусов.

Приведем новые наблюдательные факты, дополнительно свидетельствующие о наличии в ядрах галактик сверхмассивных черных дыр.

Ввиду большого отношения массы к светимости M / L > 100 для ядер галактик отвергается модель скопления обычных звезд в ядре: если бы ядро было плотным скоплением обычных звезд типа Солнца, оно бы светилось по крайней мере в 100 раз ярче, чем наблюдается. Из моделей, альтернативных сверхмассивной черной дыре, остается следующая: скопление темных тел (белых карликов, коричневых карликов, нейтронных звезд и черных дыр звездной массы). Как недавно было показано рядом теоретических групп, скопление темных тел в ядре галактики при плотности больше 1012 солнечных масс на кубический парсек испаряется за счет коллективных взаимодействий в суммарном гравитационном поле за время порядка 108 лет, что на два порядка меньше возраста галактик. Поэтому по крайней мере в двух случаях: ядро нашей Галактики и ядро галактики NGC 4258, где измеренная плотность больше 1012 солнечных масс на кубический парсек, остается возможность только сверхмассивной черной дыры.

Рентгеновские наблюдения ядер галактик, выполненные с высоким спектральным разрешением с борта японской орбитальной обсерватории «Аска», позволили построить средний профиль линии излучения 24-кратно ионизованного железа Fe XXV на энергии 6,7 кэВ. Оказалось, что профиль этой линии состоит из двух компонент: узкой, имеющей стандартную энергию 6,7 кэВ и широкой, смещенной в низкоэнергичную часть спектра. Величина этого смещения в модели гравитационного красного смещения соответствует расположению горячего газа, излучающего в рентгеновском диапазоне, на расстоянии всего в шесть гравитационных радиусов от центрального объекта. Скорость движения горячего газа на этом расстоянии, оцениваемая по ширине широкой компоненты профиля линии FeXXV, равна 100 000 км/с, или 1/3 скорости света! Эти факты прекрасно согласуются с моделью сверхмассивной черной дыры в ядрах галактик.

Замечательно то, что намечается корреляция между массой сверхмассивной черной дыры в ядре галактики и массой галактического балджа — центрального сгущения звезд, окружающего ядро: чем больше масса балджа, тем больше масса центральной черной дыры. Наблюдения приводят к важному выводу о том, что около 0,1% вещества балджа галактики сформировалось в центральную черную дыру, а остальные 99% — звезды, газ и пыль балджа. Этот фундаментальный наблюдательный факт накладывает ограничения на механизмы образования сверхмассивных черных дыр в ядрах галактик.


Библиография

Воронцов-Вельяминов Б. А. Внегалактическая астрономия. М., 1978

Гальцов Д. В. Частицы и поля в окрестности черных дыр. М., 1986

Гинзбург В. Л. О физике и астрофизике. М., 1995

Липунов В. М. В мире двойных звезд. М., 1986

Лютый В. М., Черепащук А. М. Оптические исследования рентгеновских двойных систем//Земля и Вселенная. 1986. № 5

Лютый В. М., Черепащук А. М. Новое о спектрах ядер активных галактик//Земля и Вселенная. 1990. № 4

Новиков И. Д. Черные дыры и Вселенная. М., 1985

Фролов В. П. Введение в физику черных дыр. М., 1983

Хокинг С. Краткая история времени: От Большого взрыва до черных дыр. СПб., 2001

Черепащук А. М. Массивные тесные двойные системы//Земля и Вселенная. 1985. № 1

Черепащук А. М. Черные дыры: новые данные//Земля и Вселенная. 1992. № 3

Черепащук А. М. Массы черных дыр в двойных системах//Успехи физических наук. 1996. Т. 166

Черепащук А. М. Черные дыры в двойных звездных системах//Соросовский Образовательный Журнал. 1997. № 3

Черепащук А. М. Поиски черных дыр: новейшие данные//Успехи физических наук. 2001. Т. 171


Тема № 233

Эфир 25.03.2003

Хронометраж 49:24

НТВwww.ntv.ru
 
© ОАО «Телекомпания НТВ». Все права защищены.
Создание сайта «НТВ-Дизайн».


Сайт управляется системой uCoz