|
gordon0030@yandex.ru |
||||||
Архив выпусков | Участники | |||||||
Судьбы планет |
↓№ 296↑ 17.09.2003 49:48 | ||||||
Стенограмма эфира Был ли древний Марс теплым, с открытыми водоемами — реками, озерами, может быть, морями — и с более плотной атмосферой? Если — да, то как давно началась и закончилась эпоха теплого и влажного климата, была ли она однократным событием или повторялась? О формировании планет солнечной системы, их истории и возможных сценариях дальнейшего развития — астрофизик Леонид Ксанфомалити. Участник: Леонид Васильевич Ксанфомалити — доктор Материалы к программе: Из статьи В. Н. Жаркова, В. И. Мороза «Почему Марс?» Перечень марсианских миссий выглядит весьма внушительно: пролетные аппараты «Маринер (1965–1969)», Роль метеоритной бомбардировки. Постепенно становится ясно, что заключительная катастрофическая метеоритная бомбардировка — одна из важнейших эпох в истории Луны, Земли и Марса. На Луне следы этой бомбардировки сохранились в виде гигантских круговых морей и крупных кратеров. На Земле они полностью стерты. Марс занимает промежуточное положение: на нем можно обнаружить некоторые последствия таких событий. Например, в Южном полушарии — это гигантские кратерные бассейны Эллада и Аргир. А в Северном — следы гигантских круговых кратеров стерты последующими геологическими процессами. Наибольшее изменение в истории Марса, видимо, связано с тем, что катастрофическая бомбардировка по существу разрушила имевшуюся в то время плотную атмосферу планеты и теплый влажный климат сменился климатом близким к современному. Проблема раннего Солнца и эволюция планет земной группы. Светимость раннего Солнца была примерно на 30% меньше современной. Это заключение получено на основе детальных численных моделирований эволюции звезд. Низкая светимость молодого Солнца означает, казалось бы, что температура поверхности ранней Земли и Марса должна быть существенно меньше современной. Между тем имеются данные, согласно которым на Земле в архее был теплый влажный климат. Предполагается, что относительно теплый климат на Земле и Марсе в ранние эпохи обеспечивался парниковым эффектом в их атмосферах, который создавался углекислым газом при небольшой примеси водяного пара. Парниковый эффект играет огромную роль в формировании климата современной Земли, поддерживая среднюю температуру ее поверхности на 38 К выше эффективной (т. е. соответствующей равновесию планетарного уходящего и солнечного приходящего излучений). На современном Марсе парниковый эффект тоже есть, но гораздо более слабый, всего около 4 К. Многообразие марсианской проблематики. Марс — планета, наиболее похожая на Землю. Но кроме того, что он меньше по массе и размеру, много различий также в характеристиках коры, поверхности и атмосферы, в истории воды. Атмосфера Марса на 95% состоит из диоксида углерода. Давление у поверхности близко к давлению тройной точки воды — 6,1 мбар. И это, возможно, не случайное совпадение. Открытые водоемы не могут существовать на Марсе, однако вода присутствует: следы водяного пара в атмосфере, вода, адсорбированная реголитом, кристаллизационная (в некоторых минералах горных пород), лед в полярных шапках и, возможно, при определенных условиях (в теплых областях в теплое время суток, при соляных добавках) жидкая — в грунтовых порах. Ряд особенностей современной поверхности планеты указывает на то, что были эпохи, когда вода играла еще большую роль. Разветвленные долины, весьма напоминающие русла высохших рек (вади), — наиболее яркий пример. Гипотеза о более теплом древнем Марсе с открытыми водоемами — реками, озерами, может быть, морями — и с более плотной атмосферой (на что указывает изотопный состав последней) обсуждается уже более двух десятилетий. Каковы запасы воды на Марсе? Как они распределяются между разными резервуарами (реголитом, вечной мерзлотой и др.), широтными зонами, геологическими провинциями? Как менялось это распределение со временем (история воды)? Действительно ли была, и если да, то как давно началась и закончилась эпоха теплого и влажного климата; была ли она однократным событием или повторялась? Поиски жизни на Марсе. В возникновении гипотезы о жизни на Марсе можно выделить несколько этапов: — открытие «каналов» и сезонных изменений (конец XIX — начало ХХ в.); — попытки идентификации полос поглощения органических веществ в спектре Марса — проведение на посадочных аппаратах — исследования метеорита Каналы оказались оптическим обманом. Сезонные изменения объясняют сейчас перемещением пыли. Полосы поглощения, как выяснилось, не имели отношения к Марсу. Наконец, результаты биологических экспериментов на «Викингах» были отрицательными (хотя иногда они трактуются и как неопределенные). Тем не менее поиски должны быть продолжены. За последние 10 лет к Марсу стартовали семь космических аппаратов. Один из них — японский — еще находится в полете. Что же касается остальных шести, то только два сработали успешно — Из статьи Л. Ксанфомалити «Находки в Осенью 1996 г. в журнале «Science» была опубликована статья американца Происхождение метеорита ALH 84001. Метеорит нашли в Антарктиде в 1984 году. Обычно метеориты слабо выделяются на фоне почвы, и их находят редко. Но в Антарктиде на фоне снега это сделать гораздо легче, хотя они глубоко внедряются в лед, но при выветривании старых снегов выходят на поверхность. Так находят до 400 образцов в год. Группа метеоритов SNC, в которую входят всего 12 образцов, долгое время не попадала ни в какую классификацию. Сокращение SNC — первые буквы названий населенных пунктов, где были найдены первые образцы еще в 1865, 1911 и 1815 гг. в Индии, Египте и Франции. Определить происхождение метеоритов группы SNC удалось только в наши дни — сегодня существуют методы, способные проанализировать состав вещества всего по нескольким десяткам тысяч его атомов. В 1980–83 гг. удалось провести изотопный анализ газа, содержащегося в них. Оказалось, что химический состав газа и его изотопные соотношения совпали с такими же данными для атмосферы Марса, переданными с Марса аппаратами «Викинг» в 1976–78 гг. Изотопный состав — это своеобразный паспорт; химический состав может значительно изменяться, но изотопный всегда стабилен. У всех SNC наблюдается характерное (марсианское) соотношение изотопов кислорода. ALH 84001 довольно крупный, 1,9 кг. Он пролежал после обнаружения 9 лет, не привлекая внимания. В 1993 было доказано, что изотопный состав содержащегося в нем кислорода соответствует марсианскому. В 1994 было показано наличие у него скрытых признаков SNC. А в августе 1996 группа ученых под руководством Д. Этот метеорит был выбит с поверхности Марса и впоследствии захвачен полем земного тяготения. Методы современной физики и химии позволили не только определить возраст, но и длительность пребывания в открытом космосе. Возраст 11 образцов SNC составляет от 180 Минеральные конденсации, осажденные из жидкой воды, были обнаружены в SNC метеоритах сразу, как только начались их подробные исследования. Метеорит ALH 84001 относится к изверженным породам (ортопироксениты), имеет слоистую структуру и сравнительно легко раскалывается по слоям. Именно в трещинах и порах вдоль слоев были обнаружены возникшие еще на Марсе образования, которые появились, как предполагается, в результате просачивания воды в материал. Именно эти образования и стали предметом исследования Глобулы, образованные вторичными карбонатами. Само наличие жидкой воды рассматривается как абсолютно необходимое условие для возникновения на планете жизни. На первых этапах истории Марса это условие выполнялось. Другое обязательное условие — присутствие органических материалов, из которых построены все организмы Кроме радиоизотопного определения возраста об этом говорят проходящие через отложения трещины, возникшие еще на Марсе. Именно в этих глобулах или в непосредственной близости от них (Однако происхождение самих глобул не обязательно приписывать осаждению их из воды. Имеются данные, что такие образования возникают при высоких температурах, более 650 °C. Тогда их происхождение вряд ли связано с бактериями. Но изотопный состав кислорода в материале глобул свидетельствует о температурах ниже 100 °С. Единого мнения пока здесь нет.) Полициклические ароматические гидрокарбонат. Концентрация ПАГ в глобулах относительно невелика, всего 10−6, а общее содержание органического материала Интересен изотопный состав карбонатов в ALH 84001. Земные бактерии обладают способностью сепарировать изотопы, в результате чего в ферментах (и в следах бактерий) изотопа 13С меньше, чем в природных материалах. Именно это и обнаружено в ALH 84001 методами тонкой лазерной Греди и др. отмечают, что естественные химические реакции также приводят к некоторому фракционированию изотопов углерода, но сепарацию 13С, достигающую 60‰, скорее способны выполнить микроорганизмы. Формы, подобные окаменелостям земных бактерий. Благодаря значительному прогрессу в усовершенствовании техники электронных микроскопов в работе Авторы считали важным показать, что эти образования не были случайно занесены в метеорит ALH 84001 за 13 тысяч лет его пребывания Антарктиде и что формы и размеры образований подобны существующим или существовавшим земным бактериям. Оставался также вопрос, как окаменелости нанобактерий оказались именно в изверженной, а не в осадочной породе, как это чаще бывает на Земле. Сравнение с другими метеоритами, найденными в Антарктиде, показало, что рассматриваемы образования присутствуют только в ALH 84001, причем только в глобулах. Что касается изверженной породы, то она расслаивается, бактерии легко могли попасть туда с водой. Сложнее выглядит сравнение размеров предполагаемых окаменелостей с земными микроорганизмами. Kpитики отмечают, что земные бактерии с типичными размерами Однако вопрос о существовании земных нанобактерий остается дискуссионным. Есть два сообщения, что нечто похожее найдено и на Земле. Р. Фолк из Техаского университета (Остин) сообщил о находке окаменелостей примерно тех же размеров, и даже соответствующих живых микроорганизмов в районе горячих источников в Италии. Возраст окаменелостей около 2 млрд лет. Микробиолог Т. Стивенс из Дискуссия. Возраст образований, Вероятность обнаружения микроорганизмов, аналогичных земным, оценивалась в 40%. Результаты были неоднозначными и, скорее всего, отражали сложный химизм грунта Марса, активируемого солнечной ультрафиолетовой радиацией. Зато однозначными оказались результаты пиролитического эксперимента, где проба грунта постепенно разогревалась до высокой температуры, а отходившие газовые продукты анализировались Позже в литературе высказывалась мысль, что этот отрицательный результат нельзя относить ко всей планете, что он может быть локальным. Но дело в том, что возникшую однажды жизнь уничтожить очень непросто. Жизнь не только приспосабливается к окружающей среде, но и приспосабливает ее к себе. Поэтому многие выражают мнение, что однажды возникшая жизнь на Марсе могла бы исчезнуть лишь под действием Уроки SNC показали, что наука конца XX в. готова к открытию простейших форм жизни на некоторых небесных телах, где для этого имеются минимальные условия. Эти условия уже понятны, как и пути возникновения примитивных микроорганизмов, и сформулированы в научной литературе. На V Международной конференции по биоастрономии (1996) в своем докладе нобелевский лауреат К. де Дюв сказал: «Жизнь возникла естественным образом, путем многочисленных химических реакций, имевших высокую вероятность в условиях ранней Земли». Некоторые авторы рассматривают вопрос об ALH 84001 шире, чем просто возможное существование примитивной (одноклеточной) биоты, и пытаются осмыслить проблему в свете поиска разумной жизни во Вселенной. Если жизнь столь распространена, почему поиск внеземного разума безрезультатен? Возможно, мы одна из первых развитых цивилизаций в Галактике, обреченная блуждать в космосе и находить массу протоплазмы, но никого, с кем можно было бы поговорить. Все почти Из статьи Л. Ксанфомалити «Горные потоки и бассейны на Марсе»: В 1897 г. в русском переводе вышла книга знаменитого французского популяризатора науки К. Фламмариона «Живописная астрономия». В главе, посвященной планете Марс, приводятся следующие соображения: «Человеческий мир Марса вероятно значительно опередил нас во всем и достиг большого совершенства... Эти неизвестные нам братья — не бестелесные души, но и не бездушные тела; это не сверхъестественные, но и не грубоестественные существа; они действуют, мыслят и рассуждают, как делаем это мы на Земле. Они живут в обществе, они состоят из семейств и образуют народы; они построили города и научились всяким искусствам». Начиная с философов античности, любой исследователь Вселенной, изучая другие миры, явно или подсознательно оценивает возможность обитания на них живых существ. Обитаемость планет считалась почти очевидной, а великий Исаак Ньютон допускал, что обитаемо даже Солнце. Интерес к «братьям по разуму» присущ человеку. Пожалуй, нет идеи, более популярной, чем поиск жизни на других мирах. Вспомните арию Марфы: «... в других краях, в других мирах, такое ль небо, как у нас?». С определенной натяжкой, но можно сказать, что более или менее «такое небо» есть только у Марса, из всех планет Солнечной системы. Есть ли жизнь, и есть ли вода на Марсе — эти вопросы значится в списке наиболее актуальных задач исследований этой планеты. Та единственная, Долины древних рек. В 1976 г. на поверхности планеты начали работать два американских аппарата «Viking». Климат Марса оказался очень сухим и очень холодным. Вместе с тем, было найдено значительное число образований, которые трудно назвать иначе, как долинами пересохших рек. Стало ясно, что много воды содержат полярные шапки, но, Недавно в представлениях о Марсе, как о «сухой, мертвой планете» произошел перелом. Как всегда, появление новых измерительных приборов приводит к ревизии прежних сведений. Камеры, установленные на новых аппаратах — спутниках Марса «Mars Global Surveyor» (далее — MGS) и «Mars Odyssey», — обладают весьма высоким разрешением, достигающим, в предельном случае, единиц метров на поверхности планеты. На прежних аппаратах разрешение было в тысячу раз хуже. Полученные новые снимки позволили выделить прежде неизвестные классы объектов, которыми могут быть возникающие в наши дни потоки воды (или Нельзя сказать, что подозрительных образований раньше не замечали совсем. Но твердо установленная сухость и морозность марсианского климата заставляла исследователей искать альтернативу жидкой воде. Вначале предполагалось, что небольшие, но свежие изменения рельефа планеты объясняются большими осыпями мелкого песка и камнепадами на склонах глубоких долин и кратеров. Очень широкие и протяженные овраги так и возникли. Труднее было объяснить недавнее возникновение оврагов поменьше, да еще и со следами Источником воды может быть только таяние подпочвенного льда (или вечной мерзлоты) под действием потока тепла, возникающего, в основном, при распаде содержащихся в коре планеты урана, тория и радиоактивного изотопа калия. Сейчас ясно, что в некоторых районах, на глубине от 150 до 500 м под поверхностью Марса, существует жидкая вода. Интересно отметить, что источники грунтовых вод обнаружены, в частности, на равнине Амазония, вблизи горного массива Олимп, где давно предполагалось существование покрытых льдом и скрытых слоем грунта озер и ледников. Роль подпочвенного льда, потоков воды или селей в образовании рельефа Марса несомненна. Следы воздействия древних водных потоков или просто водной среды носят многие детали рельефа Марса. На снимке долины Нанеди в Земле Ксанфа, с координатами 5,1° N и 48,3° W, можно увидеть область Марса размерами Узкие овраги на склонах. Вместе с тем, существуют и значительно более поздние образования. Среди них есть, Но наряду с осыпями сыпучего материала, на этом же снимке можно видеть не отмечавшиеся прежде На снимках удалось обнаружить сотни современных следов грунтовых вод. Следы сосредоточены, в основном, в пределах от 30° S до 30° N. Их источники всегда находятся на крутых склонах долин и кратеров, на глубине Еще на одном снимке можно увидеть небольшой кратер (центр 42° S, 158° W), расположенный внутри крупного и сильно разрушенного кратера Ньютон. На снимке виден склон с многочисленными извилистыми оврагами и осыпями сыпучего материала на дне. Размер участка на снимке Интересно различие в форме оврагов, — прямые на одной из фотографий и извилистые — на другой. Скорее всего, их форму определяют, как и на Земле, крутизна склона и свойства грунта. На крутых склонах поток может нести с собой значительные массы грунта. Доля захваченного грунта в извилистых образованиях должна быть меньше. На предыдущих фотографиях трудно различить сами источники. Такую возможность представляет еще одна фотография Марса. Здесь полная протяженность расположенного на склоне следа потока достигает 6 км. Можно предположить, что темный след соответствует увлажнению; во всяком случае, темный оттенок характерен для земных увлажненных грунтов. Источников на снимке два, причем они отстоят один от другого примерно на 150 м. Дебет каждого из них должен быть достаточно большим, чтобы оставить столь протяженный след, или создать глубокие овраги (как на предыдущих фотографиях). На снимке хорошо видно, что следы имеют разную плотность; более плотный и узкий возникает ниже и проходит вдоль менее плотного, но более широкого следа. Напрашивается вывод, что плотный след — более поздний и что он возник, когда верхний источник уже иссяк. В отличие от предыдущих фотографий, глубокого оврага (промоины) здесь нет. Возможно, это молодой источник, а промоина формируется, как и в случае земных горных рек, за достаточно длительное время. Чаши и бассейны. Для сравнения можно рассмотреть уникальные образования на горном склоне в природном заповеднике Большие массы воды, которые легко удерживаются чашами На фотографиях Марса можно увидеть склон кратера, богатого склоновыми протоками (39° S, 166° W). В нижней части снимка находится такая же изрезанной формы чаша, или бассейн, как и на Вполне вероятно, что комплекс источников и бассейн действуют в наши дни. На это указывают чистая (без отложений пыли), насколько можно судить по снимку, кромка бассейна, примыкающий к нему второй контур и четкие нитевидные притоки на склонах. Подобно горным рекам Земли, этот и другие притоки имеют ветвящуюся форму, но направлены вверх, а не вниз по склону. Это их свойство объясняется тем, что они представляют не притоки, а оттоки от основного русла, которые быстро вымерзают, частично просачиваясь в песчаный грунт. На фотографиях можно видеть еще один объект бассейн, но значительно больших размеров. Бассейн находится на дне небольшого кратера (центр 41° S, 160° W), расположенного внутри кратера Ньютон. Горизонтальная ось снимка составляет 7 км, а размер видимой части бассейна достигает 3,4 км. На крутом склоне видны многочисленные нитевидные следы потоков, возникающих в стенке вала кратера на глубине примерно 0,5 км под уровнем поверхности. Потоки состоят, Возраст бассейнов не может быть большим. Если бы ключи на склонах действовали постоянно, вместо чаш или бассейнов наблюдалась бы ровное дно кратера, покрытое твердой (или жидкой) средой. Снимки указывают на современные явления, которые возникают, развиваются и исчезают, хотя повторное появление следов на тех же местах может быть доказательством устойчивых и длительных процессов. В заключение можно отметить интересное совпадение. 15 лет назад было высказано предположение, что полюса Марса однажды переместились так, что льды прежних полярных шапок оказались на экваторе, где они сохранились под слоями грунта и отложениями вулканического пепла. Почти все обнаруженные следы проточной воды сосредоточены в восточной части Равнины Амазония и в восточной части Земли Аравия. Это как раз диаметрально противоположные экваториальные районы Марса. Марс — сухая и морозная планета, но в некоторых его районах присутствуют действующие источники и, Библиография Галимов Э. М. К вопросу о существовании жизни на Марсе//Астроном. вестник. 1997. Т. 31. № 3 Жарков В. Н. От физики Земли к сравнительной планетологии//Природа. 1998. № 12 Ксанфомалити Л. Находки в Ксанфомалити Л. Спор о происхождении находок в метеорите ALH 84001 продолжается//Астроном. вестник. 1998. Т. 32. № 6 Ксанфомалити Л. Парад планет. М., 1998 Мороз В. И. Физика планеты Марс. М., 1978 Artimowitz P., Lubow S. H. Mass flow through gaps in circumbinary disks//Astrophys. J. 1996. V. 467 Artimowitz P. Growth and interaction of extrasolar planets//24 General Assembly IAU. Abstract Book, 2000 Boss A. How do you get hot Jupiters?//Northern Light. 2000. № 2 Hartmann W. The history of Earth. New York, 1991 McKay D. S., Gibson E. K., Sagan C. Cosmos. New York, 1980. Тема № 296 Эфир 17.09.2003 Хронометраж 49:48 |
|||||||