Обратная связь
gordon0030@yandex.ru
Александр Гордон
 
  2003/Сентябрь
 
  Архив выпусков | Участники
 

Судьбы планет

  № 296 Дата выхода в эфир 17.09.2003 Хронометраж 49:48
 
С Стенограмма эфира

Был ли древний Марс теплым, с открытыми водоемами — реками, озерами, может быть, морями — и с более плотной атмосферой? Если — да, то как давно началась и закончилась эпоха теплого и влажного климата, была ли она однократным событием или повторялась? О формировании планет солнечной системы, их истории и возможных сценариях дальнейшего развития — астрофизик Леонид Ксанфомалити.

Участник:

Леонид Васильевич Ксанфомалити
 — доктор физико-математических наук, заведующий лабораторией Института космических исследований РАН

Материалы к программе:

Из статьи В. Н. Жаркова, В. И. Мороза «Почему Марс?»

Перечень марсианских миссий выглядит весьма внушительно: пролетные аппараты «Маринер (1965–1969)», «Марс-4» (1974); искусственные спутники «Маринер-9» (1971), «Марс-2 и 3 (1971), 5 (1974)», «Фобос-2» (1989), «Марс-Глобал-Сервейер» (1997); посадочные аппараты «Марс-6» (1974), «Викинг-1 и 2» (1976), «Марс-Пасфайндер» с марсоходом «Соджорнер» (1997) и др. Полученные результаты легли в основу современных представлений о поверхности, внутреннем строении и атмосфере и эволюции Марса. Интерес к Марсу связан, с одной стороны, с надеждой получить информацию о том, как формировалась Земля, о ранней эпохе ее развития, с другой — выяснить, действительно ли на раннем Марсе были условия для возникновения биологической активности.

Роль метеоритной бомбардировки. Постепенно становится ясно, что заключительная катастрофическая метеоритная бомбардировка — одна из важнейших эпох в истории Луны, Земли и Марса. На Луне следы этой бомбардировки сохранились в виде гигантских круговых морей и крупных кратеров. На Земле они полностью стерты. Марс занимает промежуточное положение: на нем можно обнаружить некоторые последствия таких событий. Например, в Южном полушарии — это гигантские кратерные бассейны Эллада и Аргир. А в Северном — следы гигантских круговых кратеров стерты последующими геологическими процессами. Наибольшее изменение в истории Марса, видимо, связано с тем, что катастрофическая бомбардировка по существу разрушила имевшуюся в то время плотную атмосферу планеты и теплый влажный климат сменился климатом близким к современному.

Проблема раннего Солнца и эволюция планет земной группы. Светимость раннего Солнца была примерно на 30% меньше современной. Это заключение получено на основе детальных численных моделирований эволюции звезд. Низкая светимость молодого Солнца означает, казалось бы, что температура поверхности ранней Земли и Марса должна быть существенно меньше современной. Между тем имеются данные, согласно которым на Земле в архее был теплый влажный климат. Предполагается, что относительно теплый климат на Земле и Марсе в ранние эпохи обеспечивался парниковым эффектом в их атмосферах, который создавался углекислым газом при небольшой примеси водяного пара. Парниковый эффект играет огромную роль в формировании климата современной Земли, поддерживая среднюю температуру ее поверхности на 38 К выше эффективной (т. е. соответствующей равновесию планетарного уходящего и солнечного приходящего излучений). На современном Марсе парниковый эффект тоже есть, но гораздо более слабый, всего около 4 К.

Многообразие марсианской проблематики. Марс — планета, наиболее похожая на Землю. Но кроме того, что он меньше по массе и размеру, много различий также в характеристиках коры, поверхности и атмосферы, в истории воды. Атмосфера Марса на 95% состоит из диоксида углерода. Давление у поверхности близко к давлению тройной точки воды — 6,1 мбар. И это, возможно, не случайное совпадение. Открытые водоемы не могут существовать на Марсе, однако вода присутствует: следы водяного пара в атмосфере, вода, адсорбированная реголитом, кристаллизационная (в некоторых минералах горных пород), лед в полярных шапках и, возможно, при определенных условиях (в теплых областях в теплое время суток, при соляных добавках) жидкая — в грунтовых порах. Ряд особенностей современной поверхности планеты указывает на то, что были эпохи, когда вода играла еще большую роль. Разветвленные долины, весьма напоминающие русла высохших рек (вади), — наиболее яркий пример. Гипотеза о более теплом древнем Марсе с открытыми водоемами — реками, озерами, может быть, морями — и с более плотной атмосферой (на что указывает изотопный состав последней) обсуждается уже более двух десятилетий. Каковы запасы воды на Марсе? Как они распределяются между разными резервуарами (реголитом, вечной мерзлотой и др.), широтными зонами, геологическими провинциями? Как менялось это распределение со временем (история воды)? Действительно ли была, и если да, то как давно началась и закончилась эпоха теплого и влажного климата; была ли она однократным событием или повторялась?

Поиски жизни на Марсе. В возникновении гипотезы о жизни на Марсе можно выделить несколько этапов:

— открытие «каналов» и сезонных изменений (конец XIX — начало ХХ в.);

— попытки идентификации полос поглощения органических веществ в спектре Марса (50–60-е годы);

— проведение на посадочных аппаратах «Викинг-1 и 2» экспериментов по обнаружению следов жизнедеятельности микроорганизмов, а также сложных органических молекул (1976);

— исследования метеорита ALH 84001 и т. д.

Каналы оказались оптическим обманом. Сезонные изменения объясняют сейчас перемещением пыли. Полосы поглощения, как выяснилось, не имели отношения к Марсу. Наконец, результаты биологических экспериментов на «Викингах» были отрицательными (хотя иногда они трактуются и как неопределенные). Тем не менее поиски должны быть продолжены. За последние 10 лет к Марсу стартовали семь космических аппаратов. Один из них — японский — еще находится в полете. Что же касается остальных шести, то только два сработали успешно — «Марс-Пасфайндер» и «Марс-Глобал-Сервейер». Погибли российский «Марс-96» и американские «Марс-Обсервер» (1992), «Марс-Клаймит-Орбитер» и «Марс-Полар-Лэндер» (1999). В настоящее время создана программа исследований Марса, предусматривающая запуск двух космических аппаратов (спутник и посадочный аппарат) в каждое астрономическое окно, т. е. с интервалом примерно два года. Кульминацией должна стать очень сложная миссия с доставкой на Землю образца марсианского вещества (старт в 2005 г., прибытие капсулы с образцом в 2008 г.). К американским проектам космических миссий прибавились европейские.

Из статьи Л. Ксанфомалити «Находки в SNC-метеорите ALH 84001»

Осенью 1996 г. в журнале «Science» была опубликована статья американца Мак-Кея с соавторами «Поиск прошлой жизни на Марсе: возможные следы биогенной активности в метеорите ALH 84001 с Марса», где говорилось, что проведенные по нескольким направлениям исследования метеорита (хотя каждое в отдельности и не доказывает существование древних марсианских микроорганизмов) предполагают такую возможность.

Происхождение метеорита ALH 84001. Метеорит нашли в Антарктиде в 1984 году. Обычно метеориты слабо выделяются на фоне почвы, и их находят редко. Но в Антарктиде на фоне снега это сделать гораздо легче, хотя они глубоко внедряются в лед, но при выветривании старых снегов выходят на поверхность. Так находят до 400 образцов в год. Группа метеоритов SNC, в которую входят всего 12 образцов, долгое время не попадала ни в какую классификацию. Сокращение SNC — первые буквы названий населенных пунктов, где были найдены первые образцы еще в 1865, 1911 и 1815 гг. в Индии, Египте и Франции. Определить происхождение метеоритов группы SNC удалось только в наши дни — сегодня существуют методы, способные проанализировать состав вещества всего по нескольким десяткам тысяч его атомов.

В 1980–83 гг. удалось провести изотопный анализ газа, содержащегося в них. Оказалось, что химический состав газа и его изотопные соотношения совпали с такими же данными для атмосферы Марса, переданными с Марса аппаратами «Викинг» в 1976–78 гг. Изотопный состав — это своеобразный паспорт; химический состав может значительно изменяться, но изотопный всегда стабилен. У всех SNC наблюдается характерное (марсианское) соотношение изотопов кислорода. ALH 84001 довольно крупный, 1,9 кг. Он пролежал после обнаружения 9 лет, не привлекая внимания. В 1993 было доказано, что изотопный состав содержащегося в нем кислорода соответствует марсианскому. В 1994 было показано наличие у него скрытых признаков SNC. А в августе 1996 группа ученых под руководством Д. Мак-Кея из исследовательского центра им. Джонсона (NASA) объявила о возможном присутствии в метеорите древних окаменелостей биологического, но не земного происхождения. (Все метеориты, как правило, загрязнены земной флорой. И Антарктида, вопреки распространенному мнению, вовсе не стерильное место.)

Этот метеорит был выбит с поверхности Марса и впоследствии захвачен полем земного тяготения. Методы современной физики и химии позволили не только определить возраст, но и длительность пребывания в открытом космосе. Возраст 11 образцов SNC составляет от 180 до 1300 млн лет. Но ALH 84001 оказался намного старше. По первым определениям, он возник из жидкой магмы 4,5 млрд лет назад, когда Марс еще не был сформирован до конца. Затем он повергся сильному удару, который оставил в нем многочисленные трещины. За 16 миллионов лет до нашего времени еще более мощный удар выбросил его с поверхности Марса в космос, где он и оставался до встречи с Землей. 13 тысяч лет назад он выпал на льды Антарктиды, где его и нашли.

Минеральные конденсации, осажденные из жидкой воды, были обнаружены в SNC метеоритах сразу, как только начались их подробные исследования. Метеорит ALH 84001 относится к изверженным породам (ортопироксениты), имеет слоистую структуру и сравнительно легко раскалывается по слоям. Именно в трещинах и порах вдоль слоев были обнаружены возникшие еще на Марсе образования, которые появились, как предполагается, в результате просачивания воды в материал. Именно эти образования и стали предметом исследования Мак-Кея с соавторами.

Глобулы, образованные вторичными карбонатами. Само наличие жидкой воды рассматривается как абсолютно необходимое условие для возникновения на планете жизни. На первых этапах истории Марса это условие выполнялось. Другое обязательное условие — присутствие органических материалов, из которых построены все организмы амино-нуклеино-кислотной формы жизни (единственно известной). Во всех метеоритах SNC присутствуют малые (следовые) количества карбонатов. Но в отличие от них, только ALH 84001 включает вторичные (переработанные) их следы, локализованные в виде микроскопических пятен, «глобул», как их обозначили Мак-Кей и его коллеги, размерами от 1 до 250 мкм. Анализ показывает, что кислород и углерод в глобулах имеют характерный изотопный состав, доказывающий их марсианское происхождение. Анализ проводился методом лазерного испарения в вакууме ничтожно количества вещества из глобул и его масс-спектрометрического разделения. Возраст этих образований был оценен в 3,6 млрд лет (когда условия на Марсе были благоприятными для возникновения жизни).

Кроме радиоизотопного определения возраста об этом говорят проходящие через отложения трещины, возникшие еще на Марсе. Именно в этих глобулах или в непосредственной близости от них Мак-Кей и его коллеги обнаружили несколько видов странных следов: ничтожные отложения особых органических соединений (полициклических ароматических гидрокарбонатов — ПАГ); колонии микроскопических удлиненных образований, напоминающих окаменелости древних земных бактерий; и еще меньшие зерна специфического минерального состава, характерные для жизнедеятельности и продуктов распада земных микроорганизмов. Мак-Кей и его коллеги провели весьма подробный сравнительный анализ метеорита ALH 84001 и других образцов из Антарктиды, по-видимому исключающий земное происхождение этих образований.

(Однако происхождение самих глобул не обязательно приписывать осаждению их из воды. Имеются данные, что такие образования возникают при высоких температурах, более 650 °C. Тогда их происхождение вряд ли связано с бактериями. Но изотопный состав кислорода в материале глобул свидетельствует о температурах ниже 100 °С. Единого мнения пока здесь нет.)

Полициклические ароматические гидрокарбонат. Концентрация ПАГ в глобулах относительно невелика, всего 10−6, а общее содержание органического материала составляет 250 · 10−6. ПАГ включают множество близких по строению химических соединений (из которых неспециалистам наиболее известен нафталин). Непосредственно микроорганизмами они не вырабатываются, однако возникают как продукт их распада. Но не только. Встречаются ПАГ также в углистых хондритах, приходящих из пояса астероидов, там где они заведомо небиологического происхождения. Но Мак-Кей и др. отмечают, что по сравнению с последними, а также по сравнению с огромным разнообразием земных ароматических гидрокарбонатов, спектр молекулярных масс ПАГ в ALH 84001 гораздо уже и охватывает массы от 178 до 276 а. е. м. Примерно такой же спектр масс присущ продуктам распада простейших земных микроорганизмов.

Интересен изотопный состав карбонатов в ALH 84001. Земные бактерии обладают способностью сепарировать изотопы, в результате чего в ферментах (и в следах бактерий) изотопа 13С меньше, чем в природных материалах. Именно это и обнаружено в ALH 84001 методами тонкой лазерной масс-спектрометрии. Возможно, это наиболее убедительный аргумент.

Греди и др. отмечают, что естественные химические реакции также приводят к некоторому фракционированию изотопов углерода, но сепарацию 13С, достигающую 60‰, скорее способны выполнить микроорганизмы. Мак-Кей и его коллеги приводят доказательства того, что ПАГ не попали в метеорит ALH 84001 ни во время лабораторных исследований, ни в Антарктиде. Отмечается также тот парадоксальный факт, что органических соединений в глубине метеорита гораздо больше, чем у поверхности. Это трудно объяснить с позиции загрязнений земными органическими соединениями, но соответствует сценарию их испарения с оплавленной корки метеорита во время его прохождения сквозь земную атмосферу. Кроме того, среди земных ПАГ много серосодержащих, но в ALH 84001 их нет.

Формы, подобные окаменелостям земных бактерий. Благодаря значительному прогрессу в усовершенствовании техники электронных микроскопов в работе Мак-Кея и его коллег удалось исследовать образования весьма малых размеров. Разрешение на снимках достигает нескольким нанометров, а сами удлиненные образования имеют размеры менее 100 нм. Как отмечалось выше, вблизи поверхности разломов (но не у самой оплавленной корки) обнаружено скопление многочисленных овальных, а в некоторых случаях — удлиненных и червеобразных образований, очень похожее на окаменелые колонии древнейших земных бактерий. Сходство форм весьма впечатляющее, а некоторые образования, возможно, даже имеют сегментированное строение.

Авторы считали важным показать, что эти образования не были случайно занесены в метеорит ALH 84001 за 13 тысяч лет его пребывания Антарктиде и что формы и размеры образований подобны существующим или существовавшим земным бактериям. Оставался также вопрос, как окаменелости нанобактерий оказались именно в изверженной, а не в осадочной породе, как это чаще бывает на Земле. Сравнение с другими метеоритами, найденными в Антарктиде, показало, что рассматриваемы образования присутствуют только в ALH 84001, причем только в глобулах. Что касается изверженной породы, то она расслаивается, бактерии легко могли попасть туда с водой. Сложнее выглядит сравнение размеров предполагаемых окаменелостей с земными микроорганизмами. Kpитики отмечают, что земные бактерии с типичными размерами 0,5–20 мкм в 100–1000 раз больше этих образований. Последних скорее следует oтнести к «нанобактериям», так как их размеры всего 20–100 нм, в среднем в 10 раз меньше длины волны видимого (зеленого) света.

Однако вопрос о существовании земных нанобактерий остается дискуссионным. Есть два сообщения, что нечто похожее найдено и на Земле. Р. Фолк из Техаского университета (Остин) сообщил о находке окаменелостей примерно тех же размеров, и даже соответствующих живых микроорганизмов в районе горячих источников в Италии. Возраст окаменелостей около 2 млрд лет. Микробиолог Т. Стивенс из Северо-западной лаборатории в Ричлэнде обнаружил бактерии всего лишь вдвое больших размеров, чем наибольшие образования в ALH 84001. Эти бактерии обитают в изверженных породах на глубине 5 км в восточной части штата Вашингтон. Необычен способ, которым они получают энергию. В отсутствие органических веществ и света, они используют реакции восстановления углекислого газа в метан, с выделением энергии, а необходимый для этого водород получают при взаимодействии горных пород с водой. (Заметим, что фотосинтез при таких размерах столкнулся бы с проблемой дифракции света; поэтому нанобактерии даже на поверхности планеты действительно должны использовать другие источники энергии).

Дискуссия. Возраст образований, 3,6 млрд лет, по определениям Мак-Кея с коллегами, совпадает с тем временем, когда климат Марса был благоприятным для возникновения жизни. Эти условия рассматривались применительно к отрицательным результатам поисков жизни на Марсе с помощью аппаратов «Викинг» группой почти однофамильца Мак-Кея (Мак-Кий и др., 1992). Однако М. Вадва с коллегами представила другую оценку возраста того же образца, — всего 1,39 млрд лет, найденную по содержанию в метеорите стронция и рубидия. А это уже совсем другие условия на Марсе. Кто из них прав, пока неясно. В частности, почему нет более поздних подобных образований в более молодых SNC? Если жизнь на Марсе была, то почему ее нет теперь? С помощью экспериментов на «Викингах» жизнь амино-нуклеино-кислотного (земного) типа на Марсе найти не удалось.

Вероятность обнаружения микроорганизмов, аналогичных земным, оценивалась в 40%. Результаты были неоднозначными и, скорее всего, отражали сложный химизм грунта Марса, активируемого солнечной ультрафиолетовой радиацией. Зато однозначными оказались результаты пиролитического эксперимента, где проба грунта постепенно разогревалась до высокой температуры, а отходившие газовые продукты анализировались масс-спектрометром и газовым хроматографом. Любая известная форма жизни при пиролизе выделяет органические летучие вещества. Исследовались образцы, взятые с глубины от 4 до 6 см. Чувствительность приборов к органическим составляющим достигала 10−10. Никаких органических соединений отмечено не было, хотя при анализе 0,1 г антарктического грунта обнаруживалось более 20 органических соединений.

Позже в литературе высказывалась мысль, что этот отрицательный результат нельзя относить ко всей планете, что он может быть локальным. Но дело в том, что возникшую однажды жизнь уничтожить очень непросто. Жизнь не только приспосабливается к окружающей среде, но и приспосабливает ее к себе. Поэтому многие выражают мнение, что однажды возникшая жизнь на Марсе могла бы исчезнуть лишь под действием каких-то совершенно катастрофических обстоятельств. С другой стороны, если бы она сейчас существовала, ее было бы трудно не обнаружить, поэтому результатами «Викингов» пренебрегать не следует. Специалисты задаются также вопросом, почему так похожи пути эволюции примитивной жизни на Земле и Марсе (если результаты анализа ALH 84001 правильны), и видят в этом проявление панспермии — проникающих повсюду зародышей жизни, присутствующих в космосе. Много говорится о необходимости расширения исследований Марса космическими средствами.

Уроки SNC показали, что наука конца XX в. готова к открытию простейших форм жизни на некоторых небесных телах, где для этого имеются минимальные условия. Эти условия уже понятны, как и пути возникновения примитивных микроорганизмов, и сформулированы в научной литературе. На V Международной конференции по биоастрономии (1996) в своем докладе нобелевский лауреат К. де Дюв сказал: «Жизнь возникла естественным образом, путем многочисленных химических реакций, имевших высокую вероятность в условиях ранней Земли». Некоторые авторы рассматривают вопрос об ALH 84001 шире, чем просто возможное существование примитивной (одноклеточной) биоты, и пытаются осмыслить проблему в свете поиска разумной жизни во Вселенной.

Если жизнь столь распространена, почему поиск внеземного разума безрезультатен? Возможно, мы одна из первых развитых цивилизаций в Галактике, обреченная блуждать в космосе и находить массу протоплазмы, но никого, с кем можно было бы поговорить. Все почти 50-летние поиски разумных сигналов из космоса не дали ровно ничего. Для объяснения этого факта приводятся самые тонкие и остроумные идеи, но самая простая причина может заключаться в том, что земная цивилизация уникальна, по крайней мере в нашей части Галактики. «Великое молчание Вселенной», по-видимому действительно определяется крайне малой вероятностью перехода от простейших одноклеточных к сложным многоклеточным организмам. Только эволюция последних может привести к появлению разума. И. Кроуфорд подчеркивает, что хотя перспективы найти жизнь в Галактике растут, но это перспективы найти примитивные ее формы. «Тот факт, что жизни потребовалось почти 3 млрд лет, чтобы перейти от одноклеточных к многоклеточным, показывает, что этот шаг очень труден». Половина жизненного пути Солнца и 5/6 истории Земли понадобилось, чтобы прийти к «кембрийскому взрыву», — внезапному и необъяснимому появлению на ней многоклеточных, пишет С. Гулд (1989). Сколько сотен миллионов лет понадобится, чтобы эта вероятность реализовалась где-то еще во Вселенной? Факт доисторического существования простейшей жизни на Марсе (если ALH 84001 действительно такой факт содержит) может быть посланием об одиночестве нашей цивилизации во Вселенной, планетные системы которой если где-то и населены, то скорее всего, одноклеточными.

Из статьи Л. Ксанфомалити «Горные потоки и бассейны на Марсе»:

В 1897 г. в русском переводе вышла книга знаменитого французского популяризатора науки К. Фламмариона «Живописная астрономия». В главе, посвященной планете Марс, приводятся следующие соображения: «Человеческий мир Марса вероятно значительно опередил нас во всем и достиг большого совершенства... Эти неизвестные нам братья — не бестелесные души, но и не бездушные тела; это не сверхъестественные, но и не грубоестественные существа; они действуют, мыслят и рассуждают, как делаем это мы на Земле. Они живут в обществе, они состоят из семейств и образуют народы; они построили города и научились всяким искусствам».

Начиная с философов античности, любой исследователь Вселенной, изучая другие миры, явно или подсознательно оценивает возможность обитания на них живых существ. Обитаемость планет считалась почти очевидной, а великий Исаак Ньютон допускал, что обитаемо даже Солнце. Интерес к «братьям по разуму» присущ человеку. Пожалуй, нет идеи, более популярной, чем поиск жизни на других мирах. Вспомните арию Марфы: «... в других краях, в других мирах, такое ль небо, как у нас?».

С определенной натяжкой, но можно сказать, что более или менее «такое небо» есть только у Марса, из всех планет Солнечной системы. Есть ли жизнь, и есть ли вода на Марсе — эти вопросы значится в списке наиболее актуальных задач исследований этой планеты. Та единственная, амино-нуклеинно-кислотная форма жизни, которую мы знаем, без воды существовать не может. Поэтому поиск жизни на Марсе начинается с поиска воды на Марсе. Задолго до начала космических исследований планет Солнечной системы астрономы пытались установить наличие воды и подтвердить (или опровергнуть) давнишнюю гипотезу о марсианских каналах. Эксперименты по измерению содержания водяного пара в атмосфере планеты ставились уже на самых первых российских космических аппаратах «Марс» и американских «Маринерах».

Долины древних рек. В 1976 г. на поверхности планеты начали работать два американских аппарата «Viking». Климат Марса оказался очень сухим и очень холодным. Вместе с тем, было найдено значительное число образований, которые трудно назвать иначе, как долинами пересохших рек. Стало ясно, что много воды содержат полярные шапки, но, по-видимому, далеко не всю. После первых прямых измерений возникла и стала быстро развиваться идея о том, что главные водные запасы сконцентрированы в подпочвенной мерзлоте, куда ушла почти вся вода с поверхности Марса. Процесс длительного похолодания продолжался сотни миллионов лет. Ныне средние температуры на Марсе лежат около −50 °C. Лишь в экваториальных районах в летний полдень температура тонкого верхнего слоя грунта может стать положительной. Обычно считается, что жидкой воды на Марсе нет не только из-за низких средних температур, но и по причине низкого атмосферного давления. Все знают, что в горах вода кипит при более низкой температуре, чем на равнине. Можно представить себе такую высокую вершину, где вода будет кипеть при 0 °C. Это примерно и соответствует марсианским условиям, где давление атмосферы, на 95% состоящей из углекислого газа, считается равным 6,1 миллибар. При давлении 6,1 мб и ниже, вода кипит при любой температуре, допускающей ее жидкое состояние. Разумеется, на долю водяного пара приходится ничтожная доля атмосферного давления Марса, около 1/10 000. Сама величина 6,1 мб, условно принятая для «средней» поверхности планеты, соответствует той «тройной» точке состояния воды, где лед, вода и водяной пар сходятся вместе. Реальные значения давления атмосферы у поверхности Марса, с его большими перепадами высот, лежат в широких пределах. Давление составляет всего 0,6 мб на вершинах гигантских древних вулканов области Фарсида, с их высотой до 24 км; 9 мб в глубоких, до 4 км, частях каньона Кондор и 10 мб на дне впадины Эллада. Там открытая водная поверхность могла бы сохраняться, пока не замерзнет. Таким образом, широко распространенное (и проникшее в популярную литературу) мнение о том, что вода вообще не может существовать в жидком виде на поверхности Марса, неверно. Другое дело, что запасы воды на Марсе весьма ограничены.

Недавно в представлениях о Марсе, как о «сухой, мертвой планете» произошел перелом. Как всегда, появление новых измерительных приборов приводит к ревизии прежних сведений. Камеры, установленные на новых аппаратах — спутниках Марса «Mars Global Surveyor» (далее — MGS) и «Mars Odyssey», — обладают весьма высоким разрешением, достигающим, в предельном случае, единиц метров на поверхности планеты. На прежних аппаратах разрешение было в тысячу раз хуже. Полученные новые снимки позволили выделить прежде неизвестные классы объектов, которыми могут быть возникающие в наши дни потоки воды (или водно-грязевые потоки) на поверхности Марса, и их источники.

Нельзя сказать, что подозрительных образований раньше не замечали совсем. Но твердо установленная сухость и морозность марсианского климата заставляла исследователей искать альтернативу жидкой воде. Вначале предполагалось, что небольшие, но свежие изменения рельефа планеты объясняются большими осыпями мелкого песка и камнепадами на склонах глубоких долин и кратеров. Очень широкие и протяженные овраги так и возникли. Труднее было объяснить недавнее возникновение оврагов поменьше, да еще и со следами каких-то потоков. Стала популярной гипотеза о том, что сжиженный в условиях низких температур углекислый газ, в чистой форме или в виде клатратов, может быть той жидкой средой, потоки которой формируют овраги на склонах Марса. Несмотря на определенные натяжки, гипотеза имеет много десятков сторонников. Недавно все стороны этой гипотезы были детально рассмотрены Стьюартом и Ниммо. Результат авторы сформулировали следующим образом: «Мы нашли, что ни конденсированный CO2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах... Мы заключаем, что овраги не могут быть образованы [жидким] CO2. В свете этих результатов потоки жидкой воды остаются вероятным механизмом формирования свежих протоков на поверхности».

Источником воды может быть только таяние подпочвенного льда (или вечной мерзлоты) под действием потока тепла, возникающего, в основном, при распаде содержащихся в коре планеты урана, тория и радиоактивного изотопа калия. Сейчас ясно, что в некоторых районах, на глубине от 150 до 500 м под поверхностью Марса, существует жидкая вода. Интересно отметить, что источники грунтовых вод обнаружены, в частности, на равнине Амазония, вблизи горного массива Олимп, где давно предполагалось существование покрытых льдом и скрытых слоем грунта озер и ледников.

Роль подпочвенного льда, потоков воды или селей в образовании рельефа Марса несомненна. Следы воздействия древних водных потоков или просто водной среды носят многие детали рельефа Марса. На снимке долины Нанеди в Земле Ксанфа, с координатами 5,1° N и 48,3° W, можно увидеть область Марса размерами 28 × 10 км. Вода оставила широкое, около 2,5 км, русло. Оно образовалось сотни миллионов лет назад. Благодаря высокому разрешению, справа на снимке можно увидеть следы более поздних узких потоков на дне долины, — климат Марса изменялся медленно. Этот снимок, полученный с аппарата MGS, относится к наилучшим иллюстрациям следов древней гидрологии Марса. Эпоха еще больших открытых водоемов на Марсе относится к ранним периодам истории планеты (более 2 млрд лет назад). Есть свидетельства, что на Марсе даже мог существовать неглубокий древний океан.

Узкие овраги на склонах. Вместе с тем, существуют и значительно более поздние образования. Среди них есть, по-видимому, и признаки современных процессов. Еще на одном снимке Марса, сделанном с помощью камеры высокого разрешения аппарата MGS, хорошо видно смещение больших масс грунта, о чем говорилось выше. По-видимому, такое сползание мелкого песка по склону происходит в современную эпоху. В нижней части снимка видны размытые валы осыпавшегося материала, которые огибают остатки прежнего рельефа, оставляя обнаженный склон. Такие же осыпи можно видеть и в других районах Марса; они известны со времен миссии «Viking» (1976 г.)

Но наряду с осыпями сыпучего материала, на этом же снимке можно видеть не отмечавшиеся прежде (из-за недостаточного разрешения) образования. Это тонкие нитевидные километровые овраги или борозды, спускающиеся по склону. Их ширина в узкой части составляет всего десятки и единицы метров. Овраги очень похожи на промоины земных горных рек или ручьёв, но в отличие от земных оврагов, они не расширяются, а сужаются вниз по склону. Поэтому они не могли возникнуть под действием камнепада или селя. Тем более они не могли образоваться под действием пылевых оползней, которые засыпают все овраги. Зато именно потоки воды легко могли бы образовать такие промоины. Они достаточно часто встречаются в полосе широт 30–70°. Ширина и глубина оврагов близка к 10–20 м, а протяженность составляет от нескольких сотен метров до километров.

На снимках удалось обнаружить сотни современных следов грунтовых вод. Следы сосредоточены, в основном, в пределах от 30° S до 30° N. Их источники всегда находятся на крутых склонах долин и кратеров, на глубине 150–500 м под уровнем прилегающей равнины. По-видимому, начиная с этой глубины, расположены горизонты грунтовых вод. Но почему следы потоков теряются внизу? Ускорение свободного падения на Марсе почти втрое меньше земного, но это, конечно, не значит, что вода течет вверх.

Еще на одном снимке можно увидеть небольшой кратер (центр 42° S, 158° W), расположенный внутри крупного и сильно разрушенного кратера Ньютон. На снимке виден склон с многочисленными извилистыми оврагами и осыпями сыпучего материала на дне. Размер участка на снимке 4,3 × 2,9 км. Ширина оврагов от единиц до 10–20 м. Как и на предыдущем снимке, они не расширяются, а сужаются вниз по склону. Это кажется парадоксальным, если овраг образован потоком. Но если поток грунтовой воды вышел на склон и устремился вниз, то в условиях Марса масштаб развивающейся промоины будет зависеть, прежде всего, от температуры поверхности. Если она составляет типичные для экваториальной зона Марса 240–260 К, поток, спускаясь по склону, должен постепенно впитываться в сухой морозный грунт и замерзать. Образуется ложе канала из промерзшего грунта, по которому поток устремляется дальше, впитываясь, наращивая промерзшее ложе и охлаждаясь. Поэтому, в отличие от земных склоновых рек, потоки на Марсе сужаются, спускаясь по склону. При замерзании воды с температурой 0 °C выделяется почти 80 ккал/кг. Поэтому промерзшее ложе потока получается достаточно толстым. В некоторых случаях, когда дневная температура грунта положительная, потоки могут распространяться на большие расстояния, но их интенсивность также должна уменьшаться с расстоянием из-за расхода воды на увлажнение песчаного грунта. Возраст оврагов не может быть очень большим хотя бы из-за постоянного разрушения под действием песка и ветра.

Интересно различие в форме оврагов, — прямые на одной из фотографий и извилистые — на другой. Скорее всего, их форму определяют, как и на Земле, крутизна склона и свойства грунта. На крутых склонах поток может нести с собой значительные массы грунта. Доля захваченного грунта в извилистых образованиях должна быть меньше.

На предыдущих фотографиях трудно различить сами источники. Такую возможность представляет еще одна фотография Марса. Здесь полная протяженность расположенного на склоне следа потока достигает 6 км. Можно предположить, что темный след соответствует увлажнению; во всяком случае, темный оттенок характерен для земных увлажненных грунтов. Источников на снимке два, причем они отстоят один от другого примерно на 150 м. Дебет каждого из них должен быть достаточно большим, чтобы оставить столь протяженный след, или создать глубокие овраги (как на предыдущих фотографиях). На снимке хорошо видно, что следы имеют разную плотность; более плотный и узкий возникает ниже и проходит вдоль менее плотного, но более широкого следа. Напрашивается вывод, что плотный след — более поздний и что он возник, когда верхний источник уже иссяк. В отличие от предыдущих фотографий, глубокого оврага (промоины) здесь нет. Возможно, это молодой источник, а промоина формируется, как и в случае земных горных рек, за достаточно длительное время.

Чаши и бассейны. Для сравнения можно рассмотреть уникальные образования на горном склоне в природном заповеднике Памук-Кале (Турция). Здесь вода многочисленных термальных источников, обогащенная кальциевыми гидросолями, минерализуется, образуя расположенные каскадом чаши, заполненные водой. Постепенно вода отступает, образуя горизонтальные кромки на поверхности чаш. Когда источник иссякает, исчезает и вода в чашах. Пустые чаши окаймляют плато изрезанной белой цепью. Рельеф Памук-Кале производит обманчивое впечатление оледеневшего горного склона, которое нарушает только заполняющая его теплая вода.

Большие массы воды, которые легко удерживаются чашами Памук-Кале, не смогли бы удержать никакие песчаные запруды на Марсе, даже с учетом втрое более низкой силы тяжести на планете. Но если грунт очень холодный, поступающая вода, впитываясь в морозный грунт, могла бы быстро создать чаши из льда и промерзшего грунта, обладающие теми же свойствами, что и чаши Памук-Кале. По существу, чаши формируются тем же механизмом, который объясняет сужение протоков вдоль склона.

На фотографиях Марса можно увидеть склон кратера, богатого склоновыми протоками (39° S, 166° W). В нижней части снимка находится такая же изрезанной формы чаша, или бассейн, как и на Памук-Кале, но намного большая по размерам. Горизонтальная ось снимка около 1500 м. Размер бассейна около 600 м, а площадь около 0,3 км². Его внешняя граница, похожая на края чаши Памук-Кале на рис. 6в, выделяется светлой окантовкой. Вероятно, это ледяная кромка. Поверхность бассейна, по сравнению с примыкающей поверхностью, гладкая; возможно, это лед. В верхней части чаши видны следы многократного понижения уровня поверхности. Сток воды через края бассейна образовал второй, внешний контур. Три таких же, но меньших по размерам контура можно видеть в левой части снимка. Источников жидкой среды, заполняющей бассейн, на снимке видно несколько. Вероятно, главный источник находится справа над чашей. Это вытянутое образование с шестью направленными вниз отростками. По-видимому, вода стекала вдоль отростков. Более мелкие структуры того же вида видны слева над бассейном и, вероятно, связаны с наиболее широким протоком вдоль склона. Форма промоин, соответствующая крутому склону, указывает, что поток должен нести с собой значительное количество грунта.

Вполне вероятно, что комплекс источников и бассейн действуют в наши дни. На это указывают чистая (без отложений пыли), насколько можно судить по снимку, кромка бассейна, примыкающий к нему второй контур и четкие нитевидные притоки на склонах.

Подобно горным рекам Земли, этот и другие притоки имеют ветвящуюся форму, но направлены вверх, а не вниз по склону. Это их свойство объясняется тем, что они представляют не притоки, а оттоки от основного русла, которые быстро вымерзают, частично просачиваясь в песчаный грунт.

На фотографиях можно видеть еще один объект бассейн, но значительно больших размеров. Бассейн находится на дне небольшого кратера (центр 41° S, 160° W), расположенного внутри кратера Ньютон. Горизонтальная ось снимка составляет 7 км, а размер видимой части бассейна достигает 3,4 км. На крутом склоне видны многочисленные нитевидные следы потоков, возникающих в стенке вала кратера на глубине примерно 0,5 км под уровнем поверхности. Потоки состоят, по-видимому, из воды и полужидкого грунта. В отличие от предыдущих фотографий, следы прямые, что указывает на большую крутизну склона. Наиболее широкий проток расположен правее центра, под нависающим языком, возможно, ледяной природы. Дно кратера выглядит затуманенным; возможно, это действительно испарения над открытой поверхностью бассейна. Судя по его площади, составляющей несколько кв. километров, приток жидкой среды здесь значительно превышает приток к бассейну на предыдущих фотографиях.

Возраст бассейнов не может быть большим. Если бы ключи на склонах действовали постоянно, вместо чаш или бассейнов наблюдалась бы ровное дно кратера, покрытое твердой (или жидкой) средой. Снимки указывают на современные явления, которые возникают, развиваются и исчезают, хотя повторное появление следов на тех же местах может быть доказательством устойчивых и длительных процессов.

В заключение можно отметить интересное совпадение. 15 лет назад было высказано предположение, что полюса Марса однажды переместились так, что льды прежних полярных шапок оказались на экваторе, где они сохранились под слоями грунта и отложениями вулканического пепла. Почти все обнаруженные следы проточной воды сосредоточены в восточной части Равнины Амазония и в восточной части Земли Аравия. Это как раз диаметрально противоположные экваториальные районы Марса.

Марс — сухая и морозная планета, но в некоторых его районах присутствуют действующие источники и, по-видимому, устойчивые каналы грунтовых вод. Присутствие жидкой воды может играть важную роль в современных гидрологических циклах на планете. Если поиск жизни на Марсе надо было начинать с поиска воды, то эта задача, по-видимому, решена. Остается отыскать жизнь на Марсе.

Библиография

Галимов Э. М. К вопросу о существовании жизни на Марсе//Астроном. вестник. 1997. Т. 31. № 3

Жарков В. Н. От физики Земли к сравнительной планетологии//Природа. 1998. № 12

Ксанфомалити Л. Находки в SNC-метеорите ALH 84001//Астроном. вестник. 1997. Т. 31. № 3

Ксанфомалити Л. Спор о происхождении находок в метеорите ALH 84001 продолжается//Астроном. вестник. 1998. Т. 32. № 6

Ксанфомалити Л. Парад планет. М., 1998

Мороз В. И. Физика планеты Марс. М., 1978

Artimowitz P., Lubow S. H. Mass flow through gaps in circumbinary disks//Astrophys. J. 1996. V. 467

Artimowitz P. Growth and interaction of extrasolar planets//24 General Assembly IAU. Abstract Book, 2000

Boss A. How do you get hot Jupiters?//Northern Light. 2000. № 2

Hartmann W. The history of Earth. New York, 1991

McKay D. S., Gibson E. K., Thomas-Keprta K.L. et al. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH 84001//Science. 1996. V.273

Sagan C. Cosmos. New York, 1980.

Тема № 296

Эфир 17.09.2003

Хронометраж 49:48


НТВwww.ntv.ru
 
© ОАО «Телекомпания НТВ». Все права защищены.
Создание сайта «НТВ-Дизайн».


Сайт управляется системой uCoz