|
gordon0030@yandex.ru |
||||||
Архив выпусков | Участники | |||||||
Сверхтяжелые элементы |
↓№ 112↑ 22.05.2002 1:15:00 | ||||||
Сколько элементов в химической таблице Менделеева? Все ли они занимают стабильное, устойчивое и безусловное место? О границах существования элементов в природе, нейтронной материи и синтезе сверхтяжелых элементов — Тезисы для дискуссии: • Что мы знаем и что хотим понять по проблеме синтеза сверхтяжелых элементов? • Есть ли границы существования элементов в природе? • Как происходил нуклеосинтез элементов во Вселенной? • Что обуславливает возможную стабильность сверхтяжелых элементов? • Насколько эта проблема фундаментальна и есть ли у нее политический аспект? • Возможности современной экпериментальной техники для ее решения. • Что такое нейтронная материя? Можно ли изучать ее в лабораторных условиях, а не только в процессе исследования астрофизических объектов, таких как нейтронные звезды и т. д.? Тенденции в мировой науке. • Нужно ли обществу изучение вышеуказанных фундаментальных проблем науки? Приводит ли оно к появлению новых идей в виде новых технологий, источников энергии, медицинских приборов и т. п. Обзор темы Известно, что все элементы от самого легкого (водорода) до самого тяжелого (урана) составляют окружающий нас мир. Они существуют в Земле. Это значит, что время их жизни больше, чем возраст самой Земли. Все элементы после урана — тяжелее его. Они образовались Концепция атома общеизвестна: ядро, которое содержит всю массу атома и его положительный заряд, и электронные орбитали. Гипотетически оно может существовать до атомных номеров: 160 и, быть может, 170. Однако граница существования элементов намечается значительно раньше, и причина кроется в нестабильности самого ядра. Поэтому вопрос о пределах существования элементов должен быть адресован ядерной физике. Если посмотреть на ядра, которые содержат разное число протонов и нейтронов, то стабильные элементы встречаются только до свинца и висмута. Затем (рис. 1) расположен «небольшой полуостров», в котором обнаружены в Земле только торий и уран. Из этого следует, что вопрос о пределах существования элементов зависит от стабильности ядер, и должен быть адресован ядерной физике. Рис. 1. Карта изотопов с атомными номерами 70Zі. Стабильность атомов показана плотностью цвета согласно правой шкале. Для области 112Zі и 165Zі приведены теоретические предсказания периодов полураспада гипотетических сверхтяжелых атомов. Как только мы продвигаемся за уран, время жизни ядер резко падает. Изотопы заурановых элементов радиоактивны, они испытывают На самом деле, положение оказалось еще более сложным. Спонтанное деление — четвертый тип радиоактивности — настигает Спонтанное деление было открыто К. А. Петржаком и Г. Н. Флеровым 60 лет тому назад как редкая разновидность распада урана. Оно становится основным, когда речь заходит о более тяжелых элементах. Объяснение явления спонтанного деления было дано Нильсом Бором в 1939 г. Согласно Н. Бору, подобный процесс может произойти, если предположить, что ядерное вещество обладает свойствами бесструктурной материи типа капли заряженной жидкости. Если капля испытывает деформацию под действием электрических сил, то ее потенциальная энергия растет до определенного предела, а затем уже необратимо уменьшается с ростом деформации до тех пор, пока капля не разделится на две части. Таким образом у ядра урана возникнет некий барьер, который удерживает это ядро от деления на протяжении 1016 лет. Если перейти от урана к более тяжелому элементу, в ядре которого кулоновские силы значительно больше, барьер понижается, и вероятность деления сильно возрастает. Наконец, при дальнейшем увеличении заряда ядра мы придем к пределу, когда уже нет никакого барьера, т. е. когда даже сферическая форма капли оказывается неустойчивой к разделению на две части. Это и есть предел стабильности ядра. Согласно расчетам Бора и Уиллера этот предел ожидался для элементов с атомными номерами Совершенно неожиданным было обнаружение в 1962 г. в Дубнинской лаборатории ядерных реакций еще и другого периода полураспада у тяжелых ядер, включая уран. Т. е. у одного и того же ядра могут быть два однотипных распада с различной вероятностью, или два времени жизни. Для урана — одно время составляет 1016 лет, что и было обнаружено Флеровым и Петржаком, а второе очень короткое, всего 0,3 микросекунды. При двух периодах полураспада надо полагать наличие у ядра двух состояний, из которых происходит деление. Это никаким образом не вписывается в представление о капле. Два состояния могут быть только в том случае, если тело не аморфное, а имеет внутреннюю структуру. Итак, ядерное вещество не является полным аналогом капли заряженной жидкости . Капля есть некое приближение к описанию ядерной материи; ядро же имеет внутреннюю структуру. Вопросами ядерной структуры серьезно занялись И это было объяснено. Но если найденное теоретиками объяснение правильно отражает свойства ядер, то когда мы придем к сверхтяжелым элементам, картина будет совсем не такой, как прогнозировалось для капли жидкости. В тяжелых элементах эта структура будет проявляться в полной мере там, где капля несостоятельна, и будет возникать так называемый структурный барьер. А это означает, что ядро может жить очень долго. Этот нетривиальный вывод теории привел, по существу, к предсказанию гипотетической области стабильности сверхтяжелых элементов, расположенных далеко от тех элементов, которые известны и с которыми мы привыкли работать. Как только это было предсказано, все крупнейшие лаборатории мира буквально бросились на то, чтобы экспериментально проверить эту гипотезу. Этим занимались в Соединенных Штатах, во Франции, в Германии. Однако во всех опытах были получены отрицательные результаты. Последние два года в Дубнинской лаборатории проводились эксперименты по синтезу новых, самых тяжелых элементов с атомными номерами 114 и 116. Задача состояла в том, чтобы получить атомы новых элементов, ядра которых обладают большим избытком нейтронов. Только в этом случае мы смогли бы приблизиться к границам гипотетического «острова стабильности» и наблюдать увеличение времени жизни сверхтяжелых ядер. Результаты опытов привели к выводу о том, что «остров стабильности» действительно существует. Каковы пути получения (синтеза) сверхтяжелых ядер? Сначала использовался нейтронный метод синтеза, когда в ядро вгоняется очень много нейтронов. В этом случае естественным было бы облучение исходно стартового вещества мощным потоком нейтронов. Для этого использовались все более и более мощные реакторы. Однако, реакторный способ синтеза исчерпал себя на фермии (элементе с атомным номером 100), потому что изотоп фермия с массой 258, который должен получаться в результате захвата нейтронов, живет всего 0,3 миллисекунды. Вся цепочка последовательного захвата нейтронов разорвалась на ступени захвата Попытка американских исследователей использовать другой способ — получить сверхтяжелые элементы в ядерных взрывах, т. е. в мощном импульсном потоке нейтронов, в конечном итоге привела к образованию того же изотопа Бесперспективность нейтронного метода привела к идее использовать принципиально иной способ синтеза сверхтяжелых элементов, который начал развиваться в середине Каковы свойства трансурановых элементов? Если В конкретном эксперименте была выбрана реакция, где в качестве исходного вещества использовался плутоний (Z = 94), его самый тяжелый изотоп с массой 244, а в качестве бомбардирующего иона изотоп Для того, чтобы поставить подобный опыт, нужно было создать ускоритель с мощностью пучка Суть самого эксперимента состояла в следующем. Получив пучок кальция, облучается мишень из плутония. Тяжелый изотоп Что, собственно говоря, можно ожидать дальше? Если справедлива гипотеза о том, что существует «остров стабильности» в области сверхтяжелых элементов и эти ядра очень устойчивы относительно спонтанного деления, они должны испытывать другой тип распада — Иными словами, ядра на вершине и вблизи вершины этого острова, устойчивые к спонтанному делению, должны быть Такую цепочку можно наблюдать, если справедлива теоретическая гипотеза. Действительно, в течение эксперимента, который продолжался непрерывно три месяца, ученые впервые наблюдали то, что ждали. Рис. 3а. Цепочки последовательных распадов сверхтяжелых атомов с Z = 114 и 116, зарегистрированных в ядерных реакциях с ионами 48Са. Для каждого распада указаны значения энергии, времени прихода сигнала и его позиционной координаты на поверхности детектора площадью 50 см². После того, как ядро отдачи пришло в детектор, который измеряет его энергию, скорость и координаты места его остановки с высокой точностью, была зарегистрирована Затем, спустя 10,3 секунды (тоже долгое время), вылетела вторая Второе событие было такое же, как первое. Оба эти события совпадают друг с другом по В этом же эксперименте наблюдалось и другое событие, значительно более долгоживущее. Здесь уже распад исчисляется минутами и десятками минут. Если отклониться в область ядер с дефицитом нейтронов, то спонтанное деление становится все более и более вероятным, что и было обнаружено (когда вместо мишени из Таким образом, синтезированные Было решено пойти дальше, подняться еще на одну ступень и попытаться синтезировать Уникальное вещество — Рис. 4. Карта нуклидов с указанием цепочек радиоактивного распада атомов, синтезированных в ядерных реакциях под действием ускоренных ионов 48Са. Топографический фон демонстрирует силу структурных эффектов в ядре атома. Такой эксперимент был поставлен недавно — и здесь ученые пошли на некоторый риск. Если в реакции образуется После вылета Если сравнить цепочку распадов после отключения ускорителя с тем, что наблюдалось для Теперь можно сравнить предсказание теории и результаты, полученные в эксперименте. Для Это хорошее согласие с теоретической гипотезой. Кроме того, эксперимент показывает, что сверхтяжелые нуклиды в этой области более долгоживущие, чем это следовало из теории. Следует обратить внимание на вершину «острова стабильности». Эта вершина может составлять миллионы лет. Она не дотягивает до возраста Земли, который составляет 4,5 миллиарда лет. Однако, если принять во внимание, что в эксперименте мы имеем превышение стабильности над расчетными значениями на отрогах «острова стабильности», то не исключено присутствие сверхтяжелых элементов в природе, в нашей системе, либо в космических лучах, т. е. в других системах. Там могут существовать сверхтяжелые элементы, время жизни которых будет исчисляться миллионами лет. Важно еще одно обстоятельство: теперь таблица элементов пополнилась новыми 114 и 116 элементами. Эксперименты дали новое звучание известным ранее 112, 110, 108 элементам, поскольку увеличение нейтронов привело к существенному возрастанию времени их жизни. Это дает возможность изучать химические свойства этих элементов. Элементы Стабильные элементы заканчиваются свинцом и висмутом. Ядра этих атомов являются магическими, что определяет повышенную энергию связи нуклонов в ядре. Затем следует область радиоактивных элементов, среди которых торий и уран наиболее устойчивы. Их период полураспада сравним с возрастом нашей планеты. По мере продвижения в сторону более тяжелых элементов время жизни ядер резко уменьшается. Полуостров радиоактивных элементов имеет выраженные границы. Теория предсказывала, что за «полуостровом» будут следовать «острова стабильности». Они будут расположены в области очень тяжелых элементов, ядра которых обогащены нейтронами. Попытки получить эти ядра в мощных потоках нейтронов не увенчались успехом. С другой стороны, в реакциях с тяжелыми ионами, начиная с Используя пучки ускоренных ионов изотопа Что же дальше? Достигнутый успех породил новые замыслы освоения открытой terra incognita. Прежде всего, хотелось бы получать ядра сверхтяжелых элементов (СТЭ) в больших количествах. Конечно, сам факт открытия нового элемента всего по двум наблюденным атомам впечатляет, но для более полного изучения требуется значительно большее количество. Необходимо создание принципиально новых, более эффективных экспериментальных установок. На проектные работы ушло полгода и в настоящее время в Лаборатории осуществляется проект создания Минатом подключил к программе свои организации и выделил необходимые финансы Библиография Bohr N., Wheeler J. The Mechanism of Nuclear Fission//Phys. Rev. 1939. № 56. Flerov G. N., Petrzhak K. A. Spontaneous fission of 238U//Phys. Rev. 1940. № 58; J. Phys. USSR. 1940. № 3. Oganessian Yu. Ts., Yeremin A. V., Popeko A. G. et al. Synthesis of nuclei of superheavy element 114 in reaction induced by 48Ca//Nature. 1999. № 400. Oganessian Yu. Ts., Utyonkov V. K., Lobanov Yu. V. et al. The synthesis of superheavy nuclei in the 48Ca + 244Pu reaction//Phys. Rev. Lett. 1999. № 83. Oganessian Yu. Ts., Yeremin A. V., Popeko A. G. et al. Observation of the decay of 292116//Phys. Rev. 2001. C 63. Seaborg G. T. Тема № 112 Эфир 22.05.2002 Хронометраж 1:15:00 |
|||||||