|
gordon0030@yandex.ru |
||||||
Архив выпусков | Участники | |||||||
Квантовая гравитация |
↓№ 200↑ 20.01.2003 51:00 | ||||||
Стенограмма эфира О цикле программ «Гравитация». Гравитационное взаимодействие занимает особое место в физике. Оно одинаково в любой среде, несводимо к другим видам взаимодействий. Мощность его столь мала, что оно сложно поддается измерению земными приборами. Тем не менее именно оно определяет движение космических тел. Какова природа гравитации? Законченной теории гравитации на данный момент нет, но попытки создать её активно ведутся многими учеными. О квантовой теории гравитации, альтернативных поисках и теории тяготения Ньютона, которая, как ни странно, вполне удовлетворяет геофизиков в их расчетах, — в цикле программ «Гравитация». Какова природа гравитации? Что это — материальное поле, подобное электромагнитному, или же, как думают многие ученые, проявление изначальных свойств самого пространства? Что такое квантовая гравитация? Каким образом проблемы теории тяготения, не решаемые в рамках классических принципов, решаются с привлечением квантовых идей? О квантовой теории гравитации, объясняющей не только проблемы классической физики, но и делающей серьезный шаг в концепции объединения фундаментальных взаимодействий, — сегодня после полуночи физики Алексей Старобинский и Дмитрий Гальцов. Участники: Гальцов Дмитрий Владимирович — доктор Старобинский Алексей Александрович — Материалы к программе: Из статьи И. Л. Бухбиндера «Фундаментальные взаимодействия» ГРАВИТАЦИОННОЕ ВЗАИМОДЕЙСТВИЕ. Это взаимодействие носит универсальный характер, в нем участвуют все виды материи, все объекты природы, все элементарные частицы! Общепринятой классической (не квантовой) теорией гравитационного взаимодействия является эйнштейновская общая теория относительности. Гравитация определяет движение планет в звездных системах, играет важную роль в процессах, протекающих в звездах, управляет эволюцией Вселенной, в земных условиях проявляет себя как сила взаимного притяжения. Конечно, мы перечислили только небольшое число примеров из огромного списка эффектов гравитации. Согласно общей теории относительности, гравитация связана с кривизной Если пренебречь всеми релятивистскими эффектами и ограничиться слабыми стационарными гравитационными полями, то общая теория относительности сводится к ньютоновской теории всемирного тяготения. Из многих физических предсказаний общей теории относительности отметим три. Теоретически установлено, что гравитационные возмущения могут распространяться в пространстве в виде волн, называемых гравитационными. Распространяющиеся слабые гравитационные возмущения во многом аналогичны электромагнитным волнам. Их скорость равна скорости света, они имеют два состояния поляризации, для них характерны явления интерференции и дифракции [следует добавить, что существует важное отличие гравитационных волн от электромагнитных. Электромагнитные волны, распространяясь в среде, сильно зависят от свойств этой среды и скорость их распространения сильно уменьшается. Гравитационное взаимодействие не меняется при переходе из одной среды в другую]. Однако в силу чрезвычайно слабого взаимодействия гравитационных волн с веществом их прямое экспериментальное наблюдение до сих пор не было возможно. Тем не менее данные некоторых астрономических наблюдений по потере энергии в системах двойных звезд свидетельствуют о возможном существовании гравитационных волн в природе. Теоретическое исследование условий равновесия звезд в рамках общей теории относительности показывает, что при определенных условиях достаточно массивные звезды могут начать катастрофически сжиматься. Это оказывается возможным на достаточно поздних стадиях эволюции звезды, когда внутреннее давление, обусловленное процессами, ответственными за светимость звезды, не в состоянии уравновесить давление сил тяготения, стремящихся сжать звезду. В результате процесс сжатия уже ничем не может быть остановлен. Описанное физическое явление, предсказанное теоретически в рамках общей теории относительности, получило название гравитационного коллапса. Исследования показали, что если радиус звезды становится меньше так называемого гравитационного радиуса, то для внешнего наблюдателя звезда гаснет. Никакая информация о процессах, идущих в этой звезде, не может достичь внешнего наблюдателя. При этом тела, падающие на звезду, свободно пересекают гравитационный радиус. Если в качестве такого тела подразумевается наблюдатель, то ничего, кроме усиления гравитации, он не заметит. Таким образом, возникает область пространства, в которую можно попасть, но из которой ничего не может выйти, включая световой луч. Подобная область пространства называется черной дырой. Существование черных дыр является одним из теоретических предсказаний общей теории относительности, некоторые альтернативные теории гравитации построены именно так, что они запрещают такого типа явления. В связи с этим вопрос о реальности черных дыр имеет исключительно важное значение. В настоящее время имеются наблюдательные данные, свидетельствующие о наличии черных дыр во Вселенной. В рамках общей теории относительности впервые удалось сформулировать проблему эволюции Вселенной. Тем самым Вселенная в целом становится не предметом спекулятивных рассуждений, а объектом физической науки. Раздел физики, предметом которого является Вселенная в целом, называется космологией. В настоящее время считается твердо установленным, что мы живем в расширяющейся Вселенной. Современная картина эволюции Вселенной основывается на представлении о том, что Вселенная, включая такие ее атрибуты, как пространство и время, возникла в результате особого физического явления, называемого Большой Взрыв, и с тех пор расширяется. Согласно теории эволюции Вселенной, расстояния между далекими галактиками должны увеличиваться со временем, и вся Вселенная должна быть заполнена тепловым излучением с температурой порядка 3 K. Эти предсказания теории находятся в прекрасном соответствии с данными астрономических наблюдений. При этом оценки показывают, что возраст Вселенной, то есть время, прошедшее с момента Большого Взрыва, составляет порядка ПОНЯТИЕ О КВАНТОВОЙ ГРАВИТАЦИИ. Можно ли вообще говорить о квантовых проявлениях гравитационного взаимодействия? Как принято считать, принципы квантовой механики носят универсальный характер и применимы к любому физическому объекту. В этом смысле гравитационное поле не представляет исключения. Теоретические исследования показывают, что на квантовом уровне гравитационное взаимодействие переносится элементарной частицей, называемой гравитон. Можно отметить, что гравитон является безмассовым бозоном со спином 2. Гравитационное взаимодействие между частицами обусловлено обменом гравитоном. Частица испускает гравитон, в силу чего состояние ее движения изменяется. Другая частица поглощает гравитон и также изменяет состояние своего движения. В результате возникает воздействие частиц друг на друга. Отличительной чертой явлений микромира является то обстоятельство, что физические величины оказываются подверженными так называемым квантовым флуктуациям. Это означает, что при многократных измерениях физической величины в определенном состоянии принципиально должны получаться различные численные значения, обусловленные неконтролируемым взаимодействием прибора с наблюдаемым объектом. Вспомним, что гравитация связана с проявлением кривизны Последовательная квантовая теория гравитации не построена. В силу чрезвычайно малых значений ℓ, t следует ожидать, что в любом обозримом будущем не удастся поставить эксперименты, в которых проявили бы себя квантовогравитационные эффекты. Поэтому теоретическое исследование вопросов квантовой гравитации остается единственной возможностью продвижения вперед. Есть ли, однако, явления, где квантовая гравитация могла бы оказаться существенной? Да, есть, и мы о них уже говорили. Это гравитационный коллапс и Большой Взрыв. Согласно классической теории гравитации, объект, подверженный гравитационному коллапсу, должен сжиматься до сколь угодно малых размеров. Это означает, что его размеры могут стать сравнимыми с ℓ, где классическая теория уже неприменима. Точно так же в процессе Большого Взрыва возраст Вселенной был сравним с t и она имела размеры порядка ℓ. Это означает, что понимание физики Большого Взрыва невозможно в рамках классической теории. Таким образом, описание конечной стадии гравитационного коллапса и начальной стадии эволюции Вселенной может быть осуществлено только с привлечением квантовой теории гравитации. Из статьи В. П. Фролова «Введение в физику черных дыр» ОСОБЕННОСТИ СИЛ ТЯГОТЕНИЯ. Одним из наиболее удивительных предсказаний теории тяготения Эйнштейна является возможность существования черных дыр — компактных массивных объектов, обладающих столь сильным гравитационным полем, что никакие физические тела, никакие сигналы не могут вырваться из них наружу. И хотя черные дыры с полной достоверностью пока еще не открыты, имеется немало причин, по которым они привлекают к себе в последние годы пристальное внимание ученых. Повидимому, наиболее важной из них является то, что обнаружение черных дыр имело бы значение, далеко выходящее за рамки астрофизики, поскольку речь идет не об открытии еще одного, быть может, довольно удивительного астрофизического объекта, а о проверке правильности наших представлений о свойствах пространства и времени в сильных гравитационных полях. Теоретические исследования свойств черных дыр и возможных следствий гипотезы об их существовании особенно интенсивно развивались последние 15 лет [статья написана в 1983 году]. Наряду с изучением тех особенностей черных дыр, которые важны для понимания их возможных астрофизических проявлений, теоретические исследования позволили обнаружить ряд неожиданных закономерностей. С такими на первый взгляд далекими областями, как термодинамика и теория информации. О черных дырах, их месте в астрофизике и об их удивительных свойствах и пойдет речь ниже. За возникновение черных дыр ответственны силы тяготения, вероятно, самого удивительного из всех известных физике взаимодействий, Начнем с того, что гравитационное взаимодействие — самое слабое. И несмотря на это, силы тяготения не только были открыты первыми, а закон Ньютона, описывающий эти силы, послужил отправной точкой для описания других взаимодействий, но и в подавляющем числе явлений в астрофизике и космологии гравитация играет основную роль. Причина этого состоит в том, что тяготение обладает рядом замечательных свойств, ведущих к его многократному усилению, не будь которого, это взаимодействие скорее всего вообще не было бы открыто. Что же это зa свойства? Гравитационные силы — дальнодействующие. Свойство дальнодействия означает, что сила, действующая на пробную частицу со стороны тела, создающего поле, медленно, по степенному закону, уменьшается с расстоянием. Благодаря этому свойству пробная частица испытывает тяготение со стороны всех частей массивного тела, в том числе и достаточно от нее удаленных. Этим свойством наряду с тяготением обладает электромагнитное взаимодействие, в то время как сильное и слабое взаимодействия являются короткодействующими и имеют малые радиусы действия. Кванты электромагнитного поля, фотоны, и кванты гравитационного поля, гравитоны, — частицы безмассовые, и сила взаимодействия между парой электрических зарядов или массивных тел убывает по известному степенному закону: сила обратно пропорциональна квадрату расстояния. Гравитационные силы имеют один знак. Между электромагнитным и гравитационным взаимодействиями имеется, однако, существенное отличие. В природе существуют электрические заряды двух видов: положительные и отрицательные, причем одноименные заряды отталкиваются. Это приводит к тому, что в макроскопических телах электрический заряд обычно практически скомпенсирован, в противном случае они были бы разорваны на части мощными силами электростатического отталкивания. Более того, при отсутствии, сторонних сил процессы в системах с заряженными телами протекают таким образом, чтобы уменьшить потенциальную энергию, при этом заряды противоположных знаков будут компенсироваться. Все это приводит к тому, что в естественных условиях электрический заряд макроскопических тел оказывается пренебрежимо малым. Напротив, «заряды тяготения» — массы — всегда имеют один и тот же знак, причем они не отталкиваются, а притягиваются друг к другу. При этом чем тело массивнее, тем оно более устойчиво относительно «развала». Для гравитационного взаимодействия характерен следующий, механизм самоусиления: массивное тело притягивает к себе вещество, падающее вещество увеличивает массу тела и, следовательно, его способность притягивать. Силы тяготения, ничтожно малые для отдельных элементарных частиц, суммируясь при составлении из них макроскопического тела, могут достигать огромной величины, вырастая в космическом масштабе, в могучий, нередко определяющий фактор. При этом малость константы гравитационного взаимодействия компенсируется большой величиной гравитационного заряда. Описанный выше механизм самоусиления приводит к тому, что в тех масштабах, в которых тяготение доминирует над другими взаимодействиями, однородное распределение вещества оказывается неустойчивым и рост случайных неоднородностей вызывает развитие, в частности, таких наблюдаемых структур, как планеты, звезды, галактики и скопления галактик. Универсальность гравитационного взаимодействия. Гравитационное взаимодействие обладает еще одним, крайне важным, отличительным свойством — оно универсально. Для каждого из остальных, перечисленных выше взаимодействий существуют нейтральные частицы, тогда как все объекты, существующие в природе (включая и поля), порождают гравитационное поле. В роли гравитационного заряда выступает полная масса т системы, которая, как учит специальная теория относительности, связана с полной энергией системы Е. Именно поэтому все объекты природы, обладая энергией, непременно участвуют в гравитационном взаимодействии. «Весит», в частности, и само гравитационное поле, что приводит к существенной нелинейности уравнений Эйнштейна, описывающих тяготение. ЧТО ТАКОЕ ЧЕРНАЯ ДЫРА? Гравитационное поле тем сильнее, чем больше масса тела и чем меньше размер области пространства, в которой это тело сосредоточено. Еще в 1795 г. великий французский математик Явление суперрадиации. Рассмотрим падающую на вращающуюся черную дыру тела, электромагнитную или гравитационную волну. Обычно при рассеянии волны на черной дыре амплитуда рассеянной волны меньше амплитуды падающей волны, поскольку часть энергии поглощается черной дырой. Однако при падении цилиндрической волны, для которой отношение энергии к ее угловому моменту относительно оси вращения черной дыры меньше угловой скорости черной дыры, происходит усиление. Явление усиления падающей волны вращающейся черной дырой получило название суперрадиации. Если окружить вращающуюся черную дыру полностью отражающими излучение стенками, то даже малый сигнал, обладающий параметрами, удовлетворяющими условию усиления, будет непрерывно расти. Подобная система вполне могла бы явиться генератором соответствующего излучения. КВАНТОВЫЕ ЭФФЕКТЫ В ЧЕРНЫХ ДЫРАХ. Квантовое рождение частиц во внешнем поле. Квантовые эффекты несущественны для черных дыр с массой порядка солнечной или больше. Однако для черных дыр малой массы эти эффекты не только не малы, но приводят к качественному изменению картины эволюции черной дыры. Согласно современным, квантовым представлениям физический вакуум, т. е. состояние, в котором отсутствуют реальные частицы, является довольно сложным образованием. В вакууме непрерывно происходит образование, взаимодействие и уничтожение виртуальных (короткоживущих) частиц. В отсутствие внешних полей вакуум устойчив, т. е. все протекающие в нем процессы не приводят к появлению реальных (долгоживущих) частиц. При наличии внешнего поля часть виртуальных частиц, взаимодействуя с ним, успевает приобрести достаточную энергию, чтобы стать реальными. Этот процесс приводит к эффекту квантового рождения частиц из вакуума внешним полем. Рождение частиц в заряженных и вращающихся черных дырах. Приведенные выше рассуждения полностью справедливы для процессов рождения заряженных частиц в однородном электростатическом поле. Это поле рождает из вакуума Классическое явление суперрадиации, рассмотренное выше, имеет квантовый аналог: спонтанное рождение частиц из вакуума в гравитационном поле вращающейся черной дыры. Поскольку в физическом вакууме равно нулю лишь среднее значение поля, а сами поля флуктуируют около нулевых значений, то амплитуда тех вакуумных флуктуации, для которых выполняется условие усиления, непрерывно возрастает, что проявляется в рождении реальных квантов поля. Работу, необходимую для превращения виртуальных частиц в реальные, совершает гравитационное поле черной дыры. Рожденные частицы, вылетающие из черной дыры, обязательно обладают угловым моментом, совпадающим по направлению с угловым моментом черной дыры. Поэтому вне вращающейся черной дыры появляется поток частиц, уносящих энергию и момент черной дыры. Для черных дыр, возникающих при коллапсе звезд, подобные квантовые эффекты крайне малы даже для быстро вращающихся чёрных дыр. Квантовый взрыв черных дыр. Квантовое испарение изолированной черной дыры приводит к уменьшению ее массы, а следовательно, и площади. Причина этого в том, что в отличие от классической теории квантовая теория допускает появление таких состояний, в которых плотность энергии отрицательна. Именно это имеет место вблизи черных дыр. Поток частиц из черной дыры на бесконечность, уносящих положительную энергию, сопровождается Завершая рассказ о черных дырах, хотелось бы обратить внимание на следующее. Еще 20 лет назад мало кто верил в саму возможность существования черных дыр. Гипотеза о черных дырах привлекла к себе пристальное внимание после открытия нейтронных звезд. И удивительное дело — черные дыры сразу «пришлись ко двору» в астрофизике. Им нашлось место не только в виде остатков при вспышках сверхновых, но и в ядpax шаровых скоплений, галактик и квазаров. После открытия С. Хокингом явления квантового испарения черных дыр особое значение приобрел вопрос о космологической роли малых черных дыр. Исследование свойств черных дыр привело к обнаружению глубоких связей между гравитацией и термодинамикой. Этот простой перечень говорит о том, что за последние Библиография Биррел Н., Дэвис П. Квантованные поля в искривленном Бухбиндер И. Л. Фундаментальные взаимодействия//Соросовский образовательный журнал. 1997. № 5. Вайнберг С. Первые три минуты: Современный взгляд на происхождение Вселенной. М., 1981. Дэвис П. Суперсила. М., 1986. Рубаков В. Большие и бесконечные дополнительные измерения//Успехи физических наук. 2001. № 171; Старобинский А. А. Квантовая теория гравитации//Физическая энциклопедия. М., 1990. Т. 2. Старобинский А. А., Ткачев И. И. Фролов В. П. Введение в физику черных дыр. М., 1983. Хокинг С. Краткая история времени: От Большого взрыва до черных дыр. СПб., 2001. John H. Schwarz, Introduction to Superstring Sahni V., Starobinsky A. A. The case for a positive cosmological Starobinsky A. A. Future and origin of our Universe: modern view//Gravitation and Cosmology. 2000. V. 6. Polchinski J. Quantum gravity at the Planck Frolov A. V., Kofman L.A., Starobinsky A. A. Prospects and problems of tachyon matter cosmology//Phys. Lett. B. 2002. V. 545. Тема № 200 Эфир 20.01.2003 Хронометраж 51:00 |
|||||||