|
gordon0030@yandex.ru |
||||||
Архив выпусков | Участники | |||||||
Внутреннее строение Земли |
↓№ 243↑ 15.04.2003 51:40 | ||||||
Стенограмма эфира Что представляет собой Земля на больших глубинах? Каков химический состав нашей планеты, из каких элементов преимущественно состоит Земля? Какие процессы происходят в мантии и ядре сегодня? Какова природа геомагнитного поля Земли? О том, что представляет собой Земля в контексте других планет солнечной системы, — доктора Участники: Олег Львович Кусков — доктор Арнольд Арнольдович Кадик — доктор Обзор темы Не будучи в состоянии заглянуть на Ядро Земли. Средний радиус Земли ~ 6371 км. Ядро Земли занимает ее центральную область с радиусом 3480 км; объем ядра составляет 16%, а масса около 32% полной массы. Граница, разделяющая две наиболее мощные геосферы Земли (мантию и ядро), располагается на глубине около 2900 км. На границе раздела между ядром и мантией происходит скачкообразное изменение физических свойств: плотности, скорости продольных волн и др. Полярный радиус ядра меньше экваториального примерно на 10 км, что приводит к различиям в глубине залегания границы Из статьи Г. И. Кузьменко: «Именно там (в ядре) рождается не меньше тепла, чем в радиоактивных материалах коры. Именно там — для классической теории — больше всего неясных явлений. Следует поэтому внимательней отнестись к предположениям о существенном уточнении температур внутри ядра и возможности там некоторого плазменного состояния». Открытие ядра. Уже в 1896 г. Е. Вихертом на основе данных по каменным и железным метеоритам было высказано предположение, что Земля состоит из внешней оболочки (мантии), окружающей более плотное металлическое ядро. В 1906 г. Р. Олдхэм привел первое сейсмологическое доказательство существования центрального ядра и дал грубую оценку его радиуса ~1600 км. Позднее крупнейшие геофизики ХХ в. Б. Гутенберг и Х. Джеффрис подтвердили наличие центрального ядра и довольно точно оценили его размеры. По современным геофизическим данным радиус ядра Земли оценивается равным Было установлено, что на границе между мантией и ядром происходит скачкообразное увеличение плотности (с 5,55 Существование магнитного поля Земли также указывает на жидкое агрегатное состояние внешнего ядра. В 1936 г. датский геофизик И. Леманн, интерпретируя сейсмологические данные, пришла к выводу о зональном строении ядра и, тем самым, к открытию небольшого внутреннего ядра. Эти исследования приводят к выводу, что внутреннее ядро радиусом около 1220 км и, занимающее Вопрос о формировании ядра. Механизм и время формирования земного ядра — один из наиболее трудных и наименее проработанных вопросов в сценариях эволюции Земли. Образование ядра можно отнести к событиям катастрофического типа. Энергия, выделяющаяся в ударных процессах в период аккреции планет, была, вероятно, достаточна для частичного проплавления планеты. Поскольку температура плавления железа и его сплавов ниже, чем силикатов, расплавленный металл мог отделяться от окружающего материала и опускаться к центру планеты, формируя ядро. При этом выделялась гравитационная энергия, дополнительно нагревающая планету на сотни градусов и вследствие этого препятствующая вхождению сильно летучих элементов в состав металла. В литературе рассматривались различные сценарии такого процесса. По одной из схем жидкие фракции железа или его сплавов, опускаясь в частично расплавленном силикатном материале (магматический океан) и сливаясь, формировали слой расплава, образующегося в тех участках планеты (как правило, в верхней мантии), в которых достигалась температура плавления металла. Вследствие гравитационной неустойчивости жидкого металлического слоя, последний либо целиком проваливался к центру планеты, либо распадался на несколько достаточно крупных капель, которые опускались к центру и образовали протоядро. Другой сценарий предполагает возникновение термических неоднородностей не только в верхней, но и в нижней мантии за счет ударов наиболее массивных крупных тел в период аккреции и приводит к гипотезе частичного проплавления нижней мантии, дифференциация которой сопровождалась выделением ядра на ранней стадии эволюции Земли. Интерпретация данных по изотопии системы Мантия. Выше были описаны проблемы стоящие перед наукой связанные с происхождением, составом, эволюцией ядра. Относительно других геосфер у науки не меньше вопросов. Главным направлением исследований А. А. Кадика является изучение планетарной дегазации, связанной с плавлением коры и мантии. Он является одним из создателей теории взаимодействия летучих компонентов с магматическими расплавами. Вопрос о флюидах (газах) мантии Земли, их влияние на взаимодействие геосфер, вулканизм и дегазация Земли. Флюидная (газовая) фаза Земли, представленная летучими компонентами O2, Н2О, СО2, Н2, СН4, N2, соединениями S, Cl, F, благородными газами, является наиболее подвижной составляющей планетарного вещества наряду с расплавами (магмами) и металлической фазой. Ее перераспределение в геологическом времени в теле Земли под воздействием гравитационных и тектонических сил, плавления и формирования металлического ядра привели к образованию атмосферы, гидросферы. Компоненты глубинных флюидов играли решающую роль в создании условий для возникновения жизни на границе твердой Земли с возникающей атмосферой и гидросферой Флюиды способны растворять многие химические элементы Земли. Они ответственны за извлечение и перенос петрогенных элементов, метасоматическое преобразование коры и мантии. Установлено существенное влияние флюидов, прежде всего воды, на механические свойства пород, которое может играть определяющую роль в перемещении блоков литосферы, геодинамике глубинного вещества мантии и горообразовании. Флюидная динамика в недрах планеты имеет сложную природу. Это: 1) миграция газов в межкристаллическом пространстве твердой Земли и их перемещение в теле планеты при конвекции; 2) растворение в расплавах мантии и перенос вместе с магмами к поверхности Земли; 3) растворение в металлической фазе при формировании ядра Земли с последующим высвобождением на границе ядро — мантия; 4) циклы летучих компонентов, связанные с погружением литосферных плит в мантию; 5) наиболее глобальное перемещение летучих компонентов связано с формированием горячих струй, осуществляющих вынос глубинного вещества к поверхности Земли, на границе мантии с ядром. Таким образом, состав флюидов и их распределение в пространстве и времени находятся в сложной зависимости от химического состава глубинных слоев Земли и особенностей геодинамических сред. Многие стороны этих зависимостей остаются непознанными. Выяснение их природы является актуальным для выяснения вклада газовой и флюидной фазы в формирование и взаимодействие геоcфер Земли, ее литосферных и астеносферных слоев. Как свидетельствуют эксперименты, флюиды могут оказывать существенное влияние на геофизические свойства вещества Земли. Выяснение этого влияния необходимо при интрепретации природы геофизического строения литосферных и астеносферных слоев верхней мантии. Направления исследований. Эволюция состава флюидов мантии в геологическом времени. Геохимические и геофизические теории предполагают эволюцию состава флюидов мантии в геологическом времени, определяемую изменением баланса кислорода в недрах планеты при ее дифференциации. Эти изменения связывают с повышением летучести кислорода в верхних слоях мантии, с уменьшением доли СН4, Н2, СО и значительным увеличением доли Н2О, СО2 в литосферных и астеносферных слоях современной верхней мантии. Одной из предполагаемых причин этого явления может быть изменение геодинамики планетарного вещества, начало тектоники плит и активного формирования астеносферных диапиров. В целом многие стороны эволюции остаются неясными и спорными. Перераспределение кислорода в недрах планеты. Химическая дифференциация Земли тесным образом связана с перераспределением кислорода в недрах планеты. Этот процесс находит свое прямое отражение в стратификации Плавление мантии и дегазация Земли. Металлическая фаза, продукты плавления (магмы), флюиды (газы) планетарного вещества играют исключительную роль в химической дифференциации Земли, формировании оболочек ввиду их исключительной подвижности в гравитационном поле Земли, при этом движение (подъем) магм и газовых компонентов тесно связаны друг с другом. Это прежде всего определяется тем летучие компоненты Земли обладают способностью к высокой растворимости в магмах при высоких давлениях. В такой растворенной форме они выносятся к поверхности Земли и высвобождаются в виде вулканических газов во время извержений. В понимании этих явлений ключевую роль сыграли эксперименты при высоких давлениях, которые соответствуют давлениям в мантии Земли. Летучие и геодинамика планетарного вещества. Связь поведения летучих компонентов Земли (флюидов) с геодинамикой глубинного вещества: конвективными течениями в мантии, формированием горячих мантийных струй, погружением литосферных слоев в мантию. Декомпрессионное плавление мантии как неизбежное следствие течения планетарного и летучие Земли. Декомпрессионное плавление мантии при восходящем течении ее вещества, роль летучих компонентов в его возникновении и реализации. Один из главных компонентов флюидов — вода — является тем компонентом мантии, который приводит к существенному понижению температур плавления пород. Отсюда вытекает исключительная роль воды в плавлении Земли, в ее дегазации при вулканической активности на поверхности планеты. Магнитное поле Земли. По сей день загадкой для ученых остается происхождение магнитного поля, хотя существует много гипотез для объяснения этого феномена. Земля действует как гигантский магнит с силовым полем вокруг. Сведения о распределении магнитного поля Земли на ее поверхности и околоземном пространстве дают наземные, морские и аэромагнитные съемки, а также измерения, производимые на низколетящих искусственных спутниках Земли. Проблема происхождения магнитного поля Земли до настоящего времени не может считаться окончательно решенной, хотя почти общепризнанной является гипотеза магнитного гидродинамо. Тепловая конвекция, то есть перемешивание вещества во внешнем ядре, способствует образованию кольцевых электрических токов. Скорость перемещения вещества в верхней части жидкого ядра будет несколько меньше, а нижних слоев — больше относительно мантии в первом случае и твердого ядра — во втором. Подобные медленные течения вызывают формирование кольцеобразных (тороидальных) замкнутых по форме электрических полей, не выходящих за пределы ядра. Благодаря взаимодействию тороидальных электрических полей с конвективными течениями во внешнем ядре возникает суммарное магнитное поле дипольного характера, ось которого примерно совпадает с осью вращения Земли. Для «запуска» подобного процесса необходимо начальное, хотя бы очень слабое, магнитное поле, которое может генерироваться гиромагнитным эффектом, когда вращающееся тело намагничивается в направлении оси его вращения. Из статьи Н. В. Короновского «Магнитное поле геологического прошлого Земли»: Не вдаваясь в довольно сложные характеристики видов намагниченности горных пород и факторов, ее определяющих, подчеркнем ведущую для палеомагнитологии (науки, изучающей геомагнитное поле прошлых геологических эпох — прим. редактора) роль естественной остаточной намагниченности. Этот вид намагниченности, будучи однажды приобретенным породой, при благоприятных условиях сохраняется длительное время. <...> Проводя замеры следов геомагнитного поля геологического прошлого в массовом порядке в горных породах различного возраста и на разных континентах, а также при бурении глубоководных скважин в океанах, мы получаем возможность выявить эволюцию геомагнитного поля Земли, как бы восстановить его историю. <...> Иверсии магнитного поля — это смена знака осесимметричного диполя. В 1906 году Б. Брюн, измеряя магнитные свойства неогеновых, сравнительно молодых лав в центральной Франции, обнаружил, что их намагниченность противоположна по направлению современному геомагнитному полю, то есть Северный и Южный магнитные полюса как бы поменялись местами. Наличие обратно намагниченных горных пород является следствием не Температура Земли на больших глубинах. Определение температуры в оболочках Земли основывается на различных, часто косвенных данных. Наиболее достоверные температурные данные относятся к самой верхней части земной коры, вскрываемой шахтами и буровыми скважинами. Нарастание температуры в градусах Цельсия на единицу глубины называют геотермическим градиентом, а глубину в метрах, на протяжении которой температура увеличивается на 10 С — геотермической ступенью. Геотермический градиент и соответственно геотермическая ступень изменяются от места к месту в зависимости от геологических условий, эндогенной активности в различных районах, а также неоднородной теплопроводности горных пород. Наиболее часто встречаемые колебания градиента в пределах Тепловой режим Земли определяется излучением Солнца и теплом, выделяемым внутриземными источниками. Самое большое количество энергии Земля получает от Солнца, но значительная часть ее отражается обратно в мировое пространство. Количество получаемого и отраженного Землей солнечного тепла неодинаково для различных широт. Среднегодовая температура отдельных пунктов в каждом полушарии уменьшается от экватора к полюсам. Ниже поверхности Земли влияние солнечного тепла резко снижается, в результате чего на небольшой глубине располагается пояс постоянной температуры, равной среднегодовой температуре данной местности. Глубина расположения пояса постоянных температур в различных районах колеблется от первых метров до Ниже пояса постоянных температур важное значение приобретает внутренняя тепловая энергия Земли. Давно установлено, что в шахтах, рудниках, буровых скважинах происходит постоянное увеличение температуры с глубиной, связанное с тепловым потоком из внутренних частей Земли. Тепловой поток измеряется в калориях на квадратный сантиметр за секунду — мккал/см²/с. По многочисленным данным, средняя величина теплового потока принимается равной 1,4–1,5 мккал/см²/с. Однако исследования, проведенные как на континентах, так и в океанах, показали значительную изменчивость теплового потока в различных структурных зонах. Разнообразие величин теплового потока, по мнению ученых, связано с неоднородными тектономагматическими процессами в различных зонах Земли. Каковы же источники тепла внутри Земли? В соответствии с современными представлениями Земля сформировалась в результате аккреции Химический состав Земли. Для суждения о химическом составе Земли привлекаются данные о метеоритах, представляющих собой наиболее вероятные образцы протопланетного материала, из которого сформировались планеты земной группы и астероиды (впрочем, это лишь предположение, что мантия и кора содержат вещество, состав которого в среднем близок к составу метеоритов). К настоящему времени хорошо изучено много выпавших на Землю в разные времена и в разных местах метеоритов. По составу выделяют три типа метеоритов: 1) железные, состоящие главным образом из никелистого железа (90–91% Fe), с небольшой примесью фосфора и кобальта; 2) железокаменные (сидеролиты), состоящие из железа и силикатных минералов; 3) каменные, или аэролиты, состоящие главным образом из Наибольшее распространение имеют каменные метеориты — около 92,7% всех находок, железокаменные — 1,3% и железные — 5,6%. На основании анализа состава различных метеоритов, а также полученных экспериментальных геохимических и геофизических данных, рядом исследователей дается современная оценка валового элементарного состава Земли, согласно которой, повышенное распространение относится к четырем важнейшим элементам: О, Fe, Si, Mg, составляющим свыше 91%. В группу менее распространенных элементов входят Ni, S, Ca, Al. Остальные элементы периодической системы Менделеева в глобальных масштабах по общему распространению имеют второстепенное значение. Если сравнить приведенные данные с составом земной коры, то отчетливо видно существенное различие, заключающееся в резком уменьшении О, Al, Si и значительном увеличении Fe, Mg и появлении в заметных количествах S и Ni. Химический состав ядра. В середине XX в. проблема химического состава ядра Земли оказалась в центре дискуссии таких дисциплин как космогония, геохимия и геофизика. В 1941 г. Кун и Ритман, основываясь на гипотезе идентичности состава Солнца и Земли и на расчетах фазового перехода в водороде, предположили, что земное ядре состоит из металлического водорода. Однако в последующих экспериментах по ударному сжатию было показано, что плотность металлического водорода примерно на порядок меньше, нежели плотность ядра. Впоследствии, гипотеза водородного ядра претерпела определенную трансформацию и сейчас находит свое отражение в моделях гидридного ядра, согласно которым распад гидридов служит поставщиком летучих и энергии, идущей на разогрев Земли. Кардинальные противоречия возникли между двумя классами гипотез: В. Н. Лодочников и У. Рамзей предположили, что нижняя мантия и ядро имеют одинаковый химический состав — на границе В последующем более строгая проверка гипотез о химическом составе ядра осуществлялась посредством сопоставления лабораторных измерений плотности и упругости различных веществ при высоких температурах и давлениях с геофизическими данными по изменению этих параметров в недрах Земли. Эксперименты по статическому и ударному сжатию железа и его сплавов с никелем (основной компоненты железных метеоритов) и другими элементами, а также породообразующих минералов (оливина, пироксена и др.) позволили сделать более определенные выводы о составе ядра. Сейчас хорошо известно, что практически все известные в природе минералы претерпевают полиморфные превращения при высоких давлениях и температурах. На глубинах переходной зоны Таким образом, совокупность лабораторных экспериментов и сейсмических данных показывает несостоятельность концепции металлизованного ядра Земли и приводит к выводу, что границу Мантия и ядро не находятся в термодинамическом равновесии и вследствие этого силикатное вещество мантии растворяется в расплавленном материале Железо имеет несколько полиморфных превращений. При низких давлениях устойчива модификация На границе Следовательно, эксперименты и теория показывают, что плотность чистого железа и тем более никелистого железа превышает плотность вещества как внешнего, так и внутреннего ядра Земли. Эти исследования подтвердили гипотезу о несостоятельности чисто железного или В космохимическом и геофизическом отношении наиболее предпочтительными легирующими компонентами ядра считаются сера, кремний и кислород. Из космохимии и метеоритики известно об образовании сплавов в системах Космохимические данные и анализ межпланетной пыли свидетельствуют, что сера, конденсирующаяся из газа солнечного состава в виде сульфида железа (троилит или пирротин — наиболее распространенные минералы метеоритов), представляет собой один из основных Эти соображения по вхождению серы в ядро (хондриты содержат около 6 мас.% FeS) получили поддержку в работах по исследованию системы Библиография Ботт Н. Внутреннее строение Земли. М., 1974 Буллен К. Е. Плотность Земли. М., 1978 Жарков В. Н. Внутренне строение Земли и планет. М., 1983 Кадик А. А., Френкель М. Я. Декомпрессия пород коры и верхней мантии как механизм магмообразования. М., 1982 Кадик А. А., Луканин О. А. Дегазация верхней мантии в процессе плавления. М., 1986 Кадик А. А. Влияние Кузьменко Г. И. Глубинные процессы Земли//Геофизический журнал. Т. 22. 2000 Ларин В. Н. Гипотеза изначально гидридной Земли. М., 1980 Кусков О. Л., Хитаров Н. И. Термодинамика и геохимия ядра и мантии Земли. М., 1982 Магницкий В. А. Внутреннее строение и физика Земли. М., 1965 Рикитаки Т. Электромагнетизм и внутреннее строение Земли. М, 1968 Рингвуд А. Е. Состав и происхождение Земли. М., 1981 Kuskov O., Kronrod V. Тема № 243 Эфир 15.04.2003 Хронометраж 51:40 |
|||||||