|
gordon0030@yandex.ru |
||||||
Архив выпусков | Участники | |||||||
Возникновение биосферы |
↓№ 266↑ 10.06.2003 48:08 | ||||||
Стенограмма эфира Биосфера как система отношений микроорганизмов возникла и существует в неизменном виде задолго до возникновения растений, животных и человека. Зачем тогда мы ей — биосфере — нужны, и нужны ли? Об эволюции биосферы Земли — академик РАН Георгий Заварзин. Участник: Заварзин Георгий Александрович — академик РАН, доктор биологических наук, заведующий лабораторией Института микробиологии РАН Материалы к программе: Из статьи: Г. А. Заварзин. Становление биосферы//Вестник Российской Академии наук. 2001. Т. 7. № 11. В истории изучения природы попытки объяснить целое через часть на пути редукционизма неоднократно сменялись попытками объяснить части через целое в системном подходе. В проблеме становления биосферы наиболее значимое смещение фокуса внимания исследователей связано с именами А. Гумбольдта и Ч. Дарвина. В 1799 г. Гумбольдт противопоставил систематизации множества природных объектов, предложенной К. Линнеем, представление о взаимодействиях в природе на основе единства времени и пространства. Гумбольдт создал биогеографию с климатом как определяющей силой ландшафта, в свою очередь понимаемого как некая физиогномическая целостность в «Ansichten der Natur». В противоположность Гумбольдту Дарвин объяснил возникновение линнеевского множества видов историей их происхождения на основе изменчивости, наследственности и естественного отбора в результате конкуренции и того, что покойный Н. Н. Моисеев назвал Рынком с большой буквы и универсальным законом природы. В современном естествознании эти две тенденции вылились, Прежде чем перейти к основному содержанию моего научного сообщения, напомню некоторые общие положения. При этом я вступаю в область, в которой являюсь скорее потребителем, чем производителем знаний. Этапы становления биосферы сейчас выяснены в общих чертах геологами и палеонтологами для • прокариотная биосфера до неопротерозойской революции (около 1 млрд лет назад); • протисты и нетканевые организмы до начала фанерозоя с вендом как переходным периодом и комбинаторным множеством биоразнообразия протист, обусловленным симбиогенезом • тканевые организмы фанерозоя Около В геологической летописи обнаружено резкое изменение состояния литосферы и поверхностных оболочек Земли около 2 млрд лет назад. Оно отмечено образованием красноцветных пород, свидетельствующих о появлении кислорода в атмосфере, прекращением железорудной эпохи и, судя по фракционированию изотопов, развитием серного цикла с сульфатредукцией. В этот период Тогда на Земле существовало лишь прокариотное сообщество и, следовательно, становление биосферы происходило под действием только бактерий. Все остальные события объясняются модификацией биосферной системы, созданной в период исключительного господства прокариот. Так называемая эволюционная биология, которую нам преподают в школах и вузах, рассматривает последовательность происхождения позвоночных животных и механизмы изменения на основе генетики и полового процесса. Это нечто вторичное и поверхностное по отношению к базовым процессам, обусловленным деятельностью «невидимых». Согласно традиционным взглядам, выживали наиболее приспособленные и, следовательно, эволюция шла в направлении все большей приспособляемости. При этом эволюция живого рисуется в виде генеалогического дерева, развивающегося от немногих предковых форм, которые должны были бы вымирать как менее приспособленные. На самом деле в природе сейчас сосуществуют представители всех главных групп организмов, последовательно появлявшихся в истории биосферы. Мы можем наблюдать всю «лестницу существ» — от примитивных до самых сложных — и на основе актуалистической палеонтологии реконструировать облик вымерших. Вместо вымирания предшествующей биоты наблюдается ее сохранение, персистентность. Сказанное можно иллюстрировать на примере строматолитов. Поверхность строматолита (возраст При разнообразии в деталях Актуалистический подход в определенных пределах оправдан. Для этой цели особенно подходят микробные сообщества, развивающиеся в местообитаниях, где отсутствуют высшие организмы. Такие сообщества называются реликтовыми и считаются аналогами экосистем прошлого. Их можно наблюдать в экстремальных условиях, например, в гидротермах или лагунах с повышенной соленостью. Под экстремальными обычно понимаются условия, в которых «трава не растет и скот не пьет». Развитие микробных сообществ в таких местах означает, что эволюция и усложнение сопровождались сужением базы жизни — тем, что Андрэ Львов в 1942 г. назвал эволюцией утраченных функций. Функциональные связи в В цикле органического углерода, однако, имеется нарушение, обусловленное неполнотой разложения органического вещества. Часть органического углерода оказывается недоступной бактериям и захоранивается в осадочных отложениях в виде керогена, составляющего основной резервуар восстановленного углерода на Земле. Дисбаланс в цикле приводит к накоплению кислорода в атмосфере и его стоку в окисленные формы железа и сульфаты Мирового океана. В атмосфере осталось около 5% кислорода, образованного за всю историю биосферы. Незамкнутость циклов ведет к так называемой биогеохимической сукцессии. Это — основная движущая сила эволюции В связи с циклом органического углерода следует обратить внимание на судьбу неорганического углерода. Углекислота дегазации Земли обнаруживается в виде отложений карбонатов — известняков и доломитов. Они возникают как конечный продукт химического выветривания (CaSiO3 + СО2 = СаСО3 + SiO2) с глинами в качестве эквивалентных остаточных накоплений. Именно в глинах происходит преимущественное захоронение керогена. С циклом органического углерода стехиометрически связаны циклы азота и фосфора соотношением Редфильда, то есть отношением этих биогенных элементов в биомассе: Цикл органического углерода может полностью осуществляться Итак, при рассмотрении функциональной системы мы получили не традиционную, а совершенно иную картину. Возникающие по мере филогенетического усложнения организмы должны приспосабливаться к уже существующей системе, и это составляет суть естественного отбора. «Творческая» его роль заключается не в вытеснении путем конкуренции, а в соответствии элемента большой системе. Нельзя быть приспособленным к тому, что будет, или к тому, что было. Единство времени и пространства, провозглашенное Гумбольдтом, — необходимая основа взаимодействий в настоящем. Таким образом, сохранение старого есть условие существования нового. Поэтому сохранение всей системы живых существ (старых даже больше, чем новых) — необходимое условие, а не упущение незавершенной эволюции. В функциональном отношении происходит наложение, а не второочередная замена, то есть эволюция осуществляется аддитивно. Поскольку первая биосфера была создана бактериями, рассмотрим систему кооперативных взаимоотношений в бактериальном сообществе. Она определяется в первую очередь трофическими отношениями. Граф трофических отношений представляет собой транспортную сеть. Для микробного сообщества каждого местообитания приходится устанавливать и идентифицировать типичных представителей функциональных групп. Граф служит планом исследования: если в нем появляется висячее ребро, то необходимо найти организм с соответствующей функцией. На начальном этапе первичные продуценты — цианобактерии или водоросли — поглощают двуокись углерода и выделяют кислород, образуя биомассу. Далее биомасса переходит в мортмассу с потерей примерно 20% органического углерода при автолизе. Аэробные деструкторы, согласно правилу Виноградского, способны использовать каждое природное вещество, и соответственно для белков, жиров и углеводов имеются Часть взвешенного органического вещества переходит в анаэробную зону, где действует группировка анаэробных гидролитиков. При этом олигомерные продукты гидролиза частично рассеиваются, их потребляют диссипотрофы, способные к утилизации растворимого органического вещества в низкой концентрации. Этой кооперативной системе свойственны термодинамические ограничения. Вся система подчиняется закону Гесса, и пути превращения вещества могут быть различными, но каждая реакция должна давать достаточно энергии для поддержания существования определенного вида микроорганизмов. Энергетический предел соответствует 1/3 энергии, необходимой для образования АТФ. Рассматривая такие кооперативные сообщества из разных мест обитания и сопоставляя функциональную и филогенетическую системы, я пришел к выводу, что тесные трофические отношения осуществляются между парами организмов, филогенетически удаленными друг от друга. Например, Благодаря применению флуоресцентных олигонуклеотидных проб удается обнаружить в сообществах представителей разных филогенетических ветвей бактерий. Их функциональное разнообразие в сообществе необходимо предполагает латеральный перенос генов, в результате которого образовалась комбинаторная морфофизиологическая фенотипическая система бактерий. Итак, микробное сообщество — главный актор (действующее лицо) природоведческой микробиологии — собирается из филогенетически удаленных видов организмов, а не возникает путем дивергенции и приобретения способностей. Эволюция микробных сообществ — основная движущая сила биогеохимической эволюции биосферы — находится в области недарвиновских представлений. Конкуренция и, возможно, селектогенез действуют внутри функциональных блоков, в то время как свойства, необходимые для вхождения в сообщество, задаются системой более высокого уровня, которая определяет направление естественного отбора. Точно так же для сообщества условия задаются ландшафтом. В результате при исследовании Чтобы не ограничиваться теоретизированием, расскажу о выполненных в моей лаборатории исследованиях, которые послужили экспериментальным основанием для изложенного. Мы изучали микробные сообщества экстремальных местообитаний в поисках аналогов экосистем прошлого. В качестве модели рассмотрим условный континент, окруженный океаном. На активном краю континента действует вулканизм, на пассивном краю в окраинных морях и лагунах происходит осадконакопление, во внутриконтинентальной области имеет место субаэральное выветривание. В океане интерес представляют зоны активной гидротермальной деятельности, в которых можно исследовать глубинную подземную биосферу гипертермофилов. В каждом из этих районов развиваются характерные микробные сообщества. Мы изучили: * термофильные сообщества гидротерм, ответственные за формирование газового состава атмосферы путем превращения восстановленных вулканических эксгаляций в кислородную атмосферу; * галофильные сообщества соленых лагун, где развиваются * алкалофильные сообщества содовых озер как вероятные аналоги континентальной биоты прошлого. В результате мы открыли большое число новых бактерий и их групп. Однако целью нашей работы было не умножение знаний о видовом биоразнообразии, а выяснение биосферных функций организмов. Например, для термофильного сообщества основной интерес представляла трансформация газов. Из организмов с уникальной функцией мы обнаружили экстремально термофильные водородные бактерии и анаэробные карбоксидобактерии, окисляющие окись углерода водой. Сейчас карбоксидобактерия (Carboxydothermus hydrogenoformans) интенсивно исследуется в Германии для создания водородной энергетики, в которой продукты парогазовой конверсии сочетаются с водородным топливным элементом. Как правило, нам удавалось построить картину трофических связей в микробных сообществах, аналогичную той, которую я уже приводил, с характерными вариациями для каждого из сообществ. В частности, в галофильном сообществе изучены группы организмов, связанные с метаболическим путем последовательной деградации осмопротекторов. В последние годы мы исследовали сообщества алкалофильных организмов, которые развиваются при рН 10. Все, что мы открыли здесь, не было изучено микробиологами, и это позволило прийти к гипотезе «содового континента» как необходимого следствия углекислотного выщелачивания. На ранних этапах эволюции Земли должен был существовать глобальный сток углекислоты, которым может быть только выветривание. Этот важнейший геохимический механизм, спасающий Землю от убегающего парникового эффекта, заключается в углекислотном выщелачивании и связывании углекислоты в карбонаты, прежде всего кальция. В субаэральных условиях, где отсутствует промывной режим, с большой вероятностью образуются содовые озера. Для микробов условия содовых озер оказались не экстремальными, а наиболее благоприятными. В них отмечена высокая степень эвтрофикации Разнообразие бактериальной жизни и полнота функций микробного сообщества в содовых озерах позволяют думать, что микробная жизнь не «вышла из моря», а «вошла в море». Отсюда один шаг до дарвиновского «маленького теплового пруда» как колыбели живого на Земле, этот шаг выводит меня из стана антидарвинистов. Ответы Г. А. Заварзина на вопросы после выступления на заседании Президиума РАН: Академик Ю. А. Израэль: Большое спасибо, Георгий Александрович, за интересный доклад. У меня к вам есть два вопроса. Первый. Вы говорили, что в истории биосферы Г. А. Заварзин: На мой взгляд, высшее состояние биосферы было в период существования бактерий, когда никто никого не ел. Ю. А. Израэль: Вы нас несколько успокаивали: миллионы лет существуют геосфера, биосфера и лишь тысячу лет парниковый эффект. Тем не менее появился человек, появились антропогенные воздействия. Все процессы сейчас могут идти (я не хочу сказать, что идут) за чрезвычайно короткие периоды. Поэтому возникает второй вопрос: есть Г. А. Заварзин: Грандиозная по масштабу катастрофа — дестабилизация атмосферы — произошла, когда железный цикл сменился на серный. Эти два цикла несовместимы, потому что при сульфатредукции железа быть не может, все оно «отправится» в сульфиды. Со сменой циклов атмосфера как бы «вывернулась наизнанку»: вместо оксигенных карманов внутри Ю. А. Израэль: А сейчас происходит дестабилизация биосферы? Г. А. Заварзин: Конечно, сейчас наблюдаются очень резкие изменения: не только концентрация углекислоты поднимается, но и концентрация кислорода падает по отношению к азоту. Куда это приведет и нужно ли нам вводить Киотский протокол?.. Наверное, нужно. Ю. А. Израэль: В таком случае возможен ли в связи с этими процессами Г. А. Заварзин: В глобальном плане, безусловно, работающий парниковый эффект «лезет вверх». С этим ничего не поделаешь, и к катастрофе мы можем подойти. В региональном плане для большинства стран, в том числе и России, критическим, на мой взгляд, является гидрологический цикл — чистая вода, в которой нуждается до 70% населения Земли. Ю. А. Израэль: Я не говорю о человечестве, я говорю о биосфере. Г. А. Заварзин: Разнесем биосферу, если все распашем. Конечно, кризис может наступить. Академик Н. А. Шило: У меня тоже возникло несколько вопросов. Из вашей концепции совершенно выпал солнечный свет, тогда как мы знаем, что он играет исключительную роль. Возьмем простой известняк, облучим его рентгеновскими лучами, обольем водой и сразу же получим целую группу аминокислот. Обнаружено влияние излучения разного спектра и на растительные организмы. Об этом свидетельствует Памирский эффект. Сахалинский эффект. Г. А. Заварзин: Действие света двояко. Мы хорошо знаем о токсическом действии ультрафиолета. Считается, что все биотические процессы ультрафиолет остановит. Однако эта идея очень сомнительна. Некоторые Н. А. Шило: Почему природа изобрела пару? В данном случае речь идет о половой паре, хотя прослеживается парность поведения и химических элементов в природе. Г. А. Заварзин: Если у нас нет трофической пары, действующей в противоположных направлениях, то система необходимо утыкается в стационарное состояние. Цикл является наиболее универсальным законом Н. А. Шило: Позвольте мне еще один вопрос. Какие силы ограничивают развитие организмов? Приведу простой пример. Гинкговые растения существуют с юры — 140 млн лет они не меняются, другие резко изменились на протяжении этого времени, третьи вовсе погибли. Почему в своем развитии отдельные организмы заходят в тупик и гибнут? Г. А. Заварзин: Академик В. Н. Большаков: Есть теория, что устойчивость биосферы зависит от степени ее структурированности: чем больше структур, тем она устойчивее, и наоборот. Между тем из вашего рассказа следует, что верхние этажи структуры биосферы — человек и высокоорганизованные сообщества — Г. А. Заварзин: Если оценивать устойчивость во времени, то, безусловно, прокариотная система была самой устойчивой. Она просуществовала миллиарды лет, время же существования высокоорганизованных сообществ измеряется всего несколькими миллионами. Академик А. С. Спирин: Как редукционист, хочу задать уточняющий вопрос. Мы знаем две группы микроорганизмов: эубактерии, которые сейчас называют просто бактериями, и архебактерии, именуемые археями. В сообществах, которые вы описывали, они сосуществовали всегда или это необязательно? Г. А. Заварзин: У меня получается, что они всегда сосуществовали в одном сообществе. Есть только одна исключительная система, состоящая преимущественно из архей, — это так называемая «глубинная биосфера» гипертермофилов, использующая глубинный водород. Но более интригующее сообщество — это археи «голубого» океана, потому что в «голубом» океане, сугубо олиготрофном, находящемся в области центральных циклонических вихрей, примерно треть обитателей археи. В «голубом» океане недостаток питательных веществ. Б. С. Соколов: Существует хорошо нам понятная концепция биосферы Ламарка — Вернадского, но известна и концепция, если выражаться языком Тейяра де Шардена, «божественной среды», уводящая нас во Вселенную. Как вам представляются связи между сферой живых систем во Вселенной и сферой живых систем на Земле? Г. А. Заварзин: То, что происходит во Вселенной, находится в ведении Палеонтологического института. Я к этому имею косвенное отношение и могу только сказать, что обе системы очень похожи друг на друга. Ю. А. Израэль: Я вновь хочу вернуться к вопросу об устойчивости биосферы. Что, с вашей точки зрения, является критическим для нынешнего состояния биосферы? Г. А. Заварзин: Для биосферы критическим является состояние углеродного цикла, цикла органического углерода. От него зависит все остальное. Ю. А. Израэль: Что значит критическое состояние углерода? Г. А. Заварзин: Как я уже говорил, основная масса углерода уходит в осадочные породы. К сожалению, геологи совершенно не рассматривают седиментационный процесс в миллионолетних системах. Вот этот процесс — один из критических на больших временах. Ю. А. Израэль: А тот углерод, что выбрасывается в атмосферу при сжигании топлива, — это значит хорошо? Г. А. Заварзин: По отношению к естественным наукам я вообще стараюсь не употреблять критерии хорошо и плохо, только критерий критичности. Безусловно, выброс в биосферу больших количеств углерода в результате антропогенной деятельности критичен для углеродного цикла. На коротких интервалах времени мы можем вывести углеродный цикл из устойчивого состояния. Ю. А. Израэль: Правильно я вас понял: для биосферы критично состояние углеродного цикла? Г. А. Заварзин: На достаточно больших временах. Ни одно заключение нельзя сделать для биосферы, не определив масштаб времени и пространства. Г. А. Заварзин: Схема трофических отношений в бактериальном сообществе, которую я приводил, подчиняется термодинамическим законам. На ней представлены самостоятельно существующие виды организмов, каждый из них должен получить свою долю энергии. Эта доля равняется одной трети АТФ. Если энергии будет меньше, существовать вид не сможет. Г. В. Добровольский: В какой мере гипотеза Ловелока о Земле как едином организме оригинальна по сравнению с более ранними мыслями, сформулированными и Виноградским и Вернадским? Г. А. Заварзин: Я очень скептически отношусь к гипотезе Ловелока, не вижу в ней ничего оригинального кроме одного — связи климата с составом атмосферы. Эту связь Ловелок действительно разработал. Представление о Земле как о большом организме Сергей Николаевич Виноградский сформулировал в 1896 г. на лекции перед членами императорской фамилии. Он сделал лекцию очень популярной, в результате она оказалась «генерализованной» в максимальной степени. Виноградский сказал, что Земля работает как большой организм, причем слово «организм» он употреблял вместо слова «система». Биолог в то время не мог сказать слово «система», потому что под этим сразу же понималась систематика. И Виноградский сделал шаг вперед по сравнению с Вернадским (только, пожалуйста, не проклинайте меня за это высказывание!). Он обратил внимание на то, что вся система работает на ВЫЖИВЕТ ЛИ ЧЕЛОВЕЧЕСТВО?: Обсуждение в президиуме РАН. Академик А. С. Спирин: Выступление Георгия Александровича Заварзина привело меня к некоторым раздумьям, может быть, и не очень оптимистическим. Через Спустя еще Меня еще очень заинтриговала схема развития редукционизма, которое заканчивается биомедициной. Непопулярная идея высказана. Дело в том, что биомедицина ведет к гибели человечества. Когда мы начнем лечить болезни Исторически мы восприняли индивидуалистическую философию, в корне противоречащую основному принципу биологии. В ней главное — вид. Особью поступаются, когда нужно выжить виду. А мы поставили во главу угла индивидуум. Академик К. С. Демирчян: Я очень далек от биологии, тем более от такого глубокого рассмотрения проблем возникновения и эволюции жизни. Но здесь на одном из графиков фигурировало понятие «устойчивое развитие», которое появилось в начале Принятые в дальнейшем решения были закручены вокруг проблемы сохранения окружающей среды. Авторитетная группа высокопоставленных лиц во главе с А. Гором, фактически захватила право определять, что угрожает человечеству, что не угрожает человечеству. В частности, было принято Киотское соглашение, ограничивающее принудительным порядком выбросы в атмосферу двуокиси углерода, связанные с работой тепловых электростанций, двигателей внутреннего сгорания и т. д. Такая мера резко осложняет социальное развитие в бедных странах, в том числе и в России. Между тем Киотское соглашение мы поспешили подписать. Его не подписали Китай, Индия и другие государства. Дж. Буш сейчас хочет выйти из этого соглашения, абсолютно правильно мотивируя свой шаг тем, что нет обоснованного научного подтверждения необходимости подобного соглашения. Он предлагает сделать подсчеты, сколько двуокиси углерода выбрасывается на той или иной территории и сколько ее поглощается. А ведь на территории России двуокись углерода поглощается. Мое предложение — вернуться к серьезному обсуждению всех аспектов тематики устойчивого развития, определить, насколько необходимо выполнение Киотского соглашения для нашей страны в тех условиях, в которых она находится. Академик Н. А. Шило: Георгий Александрович Заварзин приводил примеры систем, которые относятся к нелинейным, характеризующимся прежде всего неустойчивостью. Это открытые системы, подпитывающиеся внешней энергией, что и определяет их эволюцию. К примеру, к нелинейным системам относятся экономические, социальные и др. Видимо, в ходе становления биосферы именно такого рода системам принадлежит решающая роль. Впрочем, сам организм, любой биологический объект — это открытая система, осуществляющая массообменные процессы с окружающей средой, энергетически подпитывающаяся последней. Однако если обратиться к процессу зарождения органического мира на Земле (без понимания чего трудно себе представить становление биосферы), то это сложный природный процесс, сущность которого до конца не разгадана. Он, несомненно, связан с взаимодействием трех оболочек планеты: каменной, водной и воздушной при непременном облучении продуктов этого взаимодействия коротковолновой частью спектра солнечных лучей. На эту мысль наводит известный эксперимент. Возьмите известняк, облейте его водой и облучите рентгеновскими лучами и вы получите группу аминокислот, как известно, включающих карбоксилы и амины. Присутствующий в составе последних азот, Думаю, что на определенных этапах эволюции материального мира на отдельных объектах Вселенной неизбежно должна возникать биологическая жизнь. Это — имманентно присущее свойство материи, реализующей свои биологические возможности при Непременной особенностью становления биосферы является бифуркация биологических систем. На определенных этапах развития сообщества органического мира претерпевают бифуркацию. Развитие организмов диверсифицируются, возникают две ветви Состояние биосферы, конечно, всех волнует, но невозможно понять вектор ее изменения, если не будут раскрыты причины вымирания отдельных видов организмов на фоне бурного развития других, если не получат удовлетворительного объяснения причины внутривидовой борьбы. Обратимся, например, к человеку как к виду. Академик М. В. Иванов: Сегодня мы заслушали очень интересное сообщение, но его обсуждение в должно мере не состоялось. Мне хотелось бы вернуть внимание присутствующих непосредственно к той задаче, которую, как мне кажется, ставил Георгий Александрович Заварзин, выходя на трибуну. Он познакомил нас со своими воззрениями о первых этапах существования развитой биосферы. Конечно, проблема становления биосферы не может решаться без рассмотрения проблемы происхождения биосферы. От последней темы Георгий Александрович уходил, даже когда ему задавали прямые вопросы. А вот характеристика первых этапов существования развитой биосферы, основанной исключительно на жизнедеятельности прокариотных организмов, представляется очень интересной частью доклада. Этот доклад мог состояться только после того, как о жизни микроорганизмов мы стали судить не по их численности, не по их видовому разнообразию, а по их колоссальной геохимической активности. Если Пастер и Кох открыли разнообразие микроорганизмов, то Виноградский и Вернадский поставили вопрос о том, в каком же масштабе действуют микроорганизмы в природе. Ясно, что они вызывают эпидемии, производят миллионы литров вина и пива, но в каком масштабе они действуют в природе? Благодаря тому, что в последние 50 лет в микробиологию и в геохимию были внедрены количественные методы определения жизнедеятельности микроорганизмов, появилась возможность оценивать их геохимическую активность, в том числе и в прошлые геологические эпохи. Мне, как микробиологу, очень импонирует то, что биосфера начала функционировать без высших организмов и основные ее процессы базируются на деятельности микроорганизмов. Но я согласен с Библиография Андруз Дж., Бримблекумб П., Джикелз Т., Лисс П. Введение в химию окружающей среды. М.: Мир, 1999 Бактериальная палеонтология/Под ред. А. Ю. Розанова. М.: ПИН РАН, 2002 Заварзин Г. А. Бактерии и состав атмосферы. М.: Наука, 1984 Заварзин Г. А., Колотилова Н. Н. Введение в природоведческую микробиологию. М., 2001 Определитель бактерий Берджи: В The Proterozoic Biosphere. A multidisciplinary study/Ed. by F. William Schopf and Cornelius Klein. Cambridge Univ. Press, 1992 The Earth’s Earliest Biosphere/Ed. by F. William Schopf. Cambridge Univ. Press, 1985 The Prokaryotes. A handbook on the Biology of Bacteria: ecophysiology, isolation, identification, applications: In 4 v./Ed. bу A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K. H. Schleifer. Тема № 266 Эфир 10.06.2003 Хронометраж 48:08 |
|||||||