|
gordon0030@yandex.ru |
||||||
Архив выпусков | Участники | |||||||
Структура научных революций |
↓№ 334↑ 24.12.2003 42:28 | ||||||
Стенограмма эфира Что мы называем наукой? Действительно ли наука определяет нашу жизнь, или наше понятие о жизни определяет то, что следует признать наукой? Что такое революция в науке и можно ли в ближайшее время ожидать глобальный научный переворот? О том, как отличить революцию в науке от псевдонаучных концепций, — академик РАН Вячеслав Стёпин. Участник: Стёпин Вячеслав Семенович — академик РАН, доктор философских наук, профессор, директор Института философии РАН Материалы к программе: Из книги Степина В. С. «Теоретическое знание»: ...В динамике научного знания особую роль играют этапы развития, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки. Эти этапы получили название научных революций. Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учтены в картине мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования. Но по мере развития науки она может столкнуться с принципиально новыми типами объектов, требующими иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. Последняя может осуществляться в двух разновидностях: а) как революция, связанная с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования; б) как революция, в период которой вместе с картиной мира радикально меняются идеалы и нормы науки и ее философские основания. В истории естествознания можно обнаружить образцы обеих ситуаций интенсивного роста знаний. Примером первой из них может служить переход от механической к электродинамической картине мира, осуществленный в физике последней четверти XIX столетия в связи с построением классической теории электромагнитного поля. Этот переход, хотя и сопровождался довольно радикальной перестройкой видения физической реальности, существенно не менял познавательных установок классической физики (сохранилось понимание объяснения как поиска субстанциональных оснований объясняемых явлений и жестко детерминированных связей между явлениями; из принципов объяснения и обоснования элиминировались любые указания на средства наблюдения и операциональные структуры, посредством которых выявляется сущность исследуемых объектов и т. д.). Примером второй ситуации может служить история Новая картина исследуемой реальности и новые нормы познавательной деятельности, утверждаясь в конкретной науке, затем могут оказать революционизирующее воздействие на другие науки. В этой связи можно выделить два пути перестройки оснований исследования: за счет внутридисциплинарного развития знаний, за счет междисциплинарных связей, «прививки» парадигмальных установок одной науки на другую. Оба эти пути в реальной истории науки как бы накладываются друг на друга, поэтому в большинстве случаев правильнее говорить о доминировании одного из них в каждой из наук на том или ином этапе ее исторического развития. <...> Парадоксы являются сигналом того, что наука втянула в сферу своего исследования новый тип процессов, существенные характеристики которых не были отражены в картине мира. Представления об абсолютном пространстве и времени, сложившиеся в механике, позволяли непротиворечивым способом описывать процессы, протекающие с малыми скоростями по сравнению со скоростью света. В электродинамике же исследователь имел дело с принципиально иными процессами, которые характеризуются околосветовыми или световой скоростями. И здесь применение старых представлений приводило к противоречиям в самом фундаменте физического знания. Таким образом специальная теоретическая задача перерастала в проблему: система знания не могла оставаться противоречивой (непротиворечивость теории является нормой ее организации), но для того, чтобы устранить парадоксы, требовалось изменить физическую картину мира, которая воспринималась исследователем как адекватное воспроизведение действительности... Ситуации подобного рода достаточно характерны для науки, вступающей в полосу научной революции. Возникающие в этот период научные проблемы появляются благодаря решению специальных задач. Механизм перерастания задачи в проблему, с нашей точки зрения, заключается в том, что генерированные сложившимися основаниями науки теоретические схемы и законы перестраиваются в процессе своего эмпирического обоснования, приводятся в соответствие с новыми фактами и таким путем включают в себя новое содержание. При обратном отображении на основания (в частности, на картину мира) это содержание может рассогласовываться с вводимыми в картине мира представлениями о реальности. Если картина мира не учитывает специфику новых объектов, то отображение на нее теоретических схем, схватывающих некоторые существенные особенности таких объектов, приводит к парадоксам в системе знания. Парадоксы разрешаются в науке путем перестройки ранее сложившихся оснований. Такая перестройка обязательно предполагает изменение картины мира. Однако пересмотр картины мира является весьма нелегким делом, поскольку она в предшествующий период стимулировала теоретические и эмпирические исследования и воспринималась как адекватный образ сущности изучаемых процессов... ...Создатель теории относительности не раз подчеркивал, что понятия науки должны описывать реальность, существующую независимо от нас. Мы видим реальность через систему понятий и поэтому часто отождествляем понятия с реальностью, абсолютизируем их. Между тем опыт развития науки свидетельствует, что даже наиболее фундаментальные понятия и представления науки «никогда не могут быть окончательными». «Мы всегда должны быть готовы изменить эти представления, т. е. изменить аксиоматическую базу физики, чтобы обосновать факты восприятия логически наиболее совершенным образом». Такого рода философская критика понятий и принципов физической картины мира служит предпосылкой ее последующей коренной перестройки. Но роль <...> Ретроспективно оценивая процесс создания специальной теории относительности, Эйнштейн подчеркивал, что фундаментальную роль в ее построении сыграл гносеологический постулат: «понятия и суждения имеют смысл лишь постольку, поскольку им можно однозначно сопоставить наблюдаемые факты. (Требование содержательности понятий и суждений)». Этот постулат правомерно рассматривать как одну из формулировок принципа наблюдаемости. Известно, что принцип наблюдаемости широко пропагандировался Э. Махом, который видел в нем выражение своей концепции теории и опыта (теория, по Маху, есть сжатая сводка опытных данных, которые, в свою очередь, истолковывались как ощущения познающего субъекта)... <...> Принцип наблюдаемости представлял собой методологический норматив, выражающий идеал опытного обоснования теории. В то же время он был связан и с теми идеалами теоретического объяснения и организации знаний, которые Эйнштейн характеризовал как внутреннее совершенство теории. Требуя элиминировать из ядра теории понятия, не удовлетворяющие операциональным критериям, принцип наблюдаемости указывал пути минимизации фундаментальных понятий, посредством которых объясняются опытные факты. Известно, что сама установка на минимизацию фундаментальных теоретических понятий, объясняющих факты, формулируется как принцип простоты. Этот принцип представляет собой норматив, непосредственно выражающий идеал «внутреннего совершенства теории». Таким образом, между принципами наблюдаемости и простоты имеется связь, что свидетельствует об определенной системной организации методологических регулятивов, эксплицирующих нормы научного познания... <...> Принципы наблюдаемости и простоты — принципы не только современной, но и классической физики. В них можно выделить как некоторое инвариантное содержание, характеризующее универсальные, устойчиво воспроизводящиеся черты познавательных установок физики, так и конкретизирующий слой положений, которым различаются исторические этапы развития науки и который выражает стиль физического мышления, господствующий на каждом таком этапе. Переход от классической к современной физике сопровождался перестройкой указанного конкретизирующего слоя, что соответствовало перестройке норм физического исследования, формированию новых познавательных установок, обеспечивших прогресс науки. В методологических исследованиях уже отмечалось, что конкретное содержание принципа простоты изменялось в истории науки. Как известно, принцип простоты был сформулирован еще в XIII столетии У. Оккамом в виде требования не умножать сущностей сверх меры при объяснении явлений («бритва Оккама»). В классическом естествознании это требование сохранилось, но было соединено с особой системой интерпретирующих положений: идея минимизации теоретических принципов выводилась из постулата «онтологической простоты природы», а критериями соответствия логической простоты теории простоте природы считались не только проверяемость опытом и широта охвата принципами объясняемых и предсказываемых явлений, но и наглядность принципов. В современном естествознании последний критерий уже не принимается в качестве решающего. В то же время математизация современной физики и широкое применение в ней метода математической гипотезы ввели новый слой конкретизирующих положений в принцип простоты, связав его с принципами инвариантности и симметрии. Конкретное содержание принципа наблюдаемости также изменялось в процессе исторического развития физики. В период создания СТО перестройка этого содержания соответствовала формированию нового идеала обоснования теории, что, в свою очередь, знаменовало переход от классического к современному стилю мышления. Этот переход наметился уже в первоначальных версиях эйнштейновской трактовки наблюдаемости. Он был связан со становлением особого способа построения и обоснования концептуального ядра физической теории. Указанное ядро можно определить (опираясь на проведенный выше анализ структуры теоретического знания) как фундаментальную теоретическую схему, отображенную на картину мира. Понятия, образующие ядро теории, включают определения, в которых выражается связь между признаками идеальных объектов теоретической схемы и объектов картины мира. Поэтому анализ фундаментальных понятий теории с позиций принципа наблюдаемости сопряжен с выявлением опытных оснований физической картины мира, экспликацией операционального фундамента тех признаков, которыми наделены ее идеальные объекты, получившие онтологический статус. Картина мира обосновывалась опытом и в классической физике, но это обоснование понималось как проверка в экспериментах и измерениях следствий, выводимых из принципов картины мира... В XIX столетии усилиями практически одного поколения ученых была осуществлена довольно радикальная перестройка естественнонаучной картины мира. Вначале, в связи с отказом от концепции невесомых субстанций, таких как теплород, электрический и магнитный флюиды, была видоизменена господствовавшая в физике механическая картина мира. Затем она была преобразована в электродинамическую. Изменились не только представления о «субстрате» физических процессов (из обширного семейства невесомых остался только мировой эфир). Изменились взгляды и на природу физического взаимодействия: принцип близкодействия постепенно вытесняет старые представления о мгновенной передаче сил в пустоте, различные виды сил начинают рассматриваться как превращающиеся друг в друга. Аналогичные процессы перестройки видения реальности протекали в соседних с физикой науках. Из научной картины мира элиминировались представления о флогистоне и различных биологических флюидах как особых субстанциях — носителях «химических» и «биологических сил». Устанавливались связи между физикой и химией на базе атомистических представлений. Химические процессы постепенно начинают рассматриваться как фундамент биологических явлений. В биологии формируется картина эволюции живых организмов, которая окончательно утверждается после создания теории Дарвина и вызывает радикальные сдвиги в естественнонаучной картине мира. Все эти процессы пересмотра «онтологических постулатов» естествознания, осуществившиеся за относительно короткий период эволюции науки, обнажили ряд важных особенностей формирования научной теории. Выяснилось, что одни и те же законы природы могут быть выражены с помощью различных понятий и что альтернативные системы теоретических постулатов могут до определенного момента опираться на одни и те же опытные факты и служить основанием для формулировки законов, объясняющих эти факты. Например, феноменологическая термодинамика, опирающаяся на концепцию теплорода, с успехом объясняла и предсказывала многие эмпирически фиксируемые явления. Переход к <...> Необходимость критического отношения к принятым в классическом естествознании идеалам и нормам раньше всего была уловлена и начала осмысливаться в философии. Уже в рамках классической философской традиции в преддверии XIX столетия была поставлена проблема предпосылок познавательной деятельности и оснований естествознания (Кант). Все яснее осознавались Центральное место при разработке философских вопросов науки в последней трети XIX века занял поиск методов обоснования фундаментальных научных абстракций и критериев, в соответствии с которыми они должны включаться в состав научного знания. Ряд важных аспектов этой проблематики был развит конвенционализмом и эмпириокритицизмом, оказавших непосредственное влияние на эйнштейновское творчество. Рациональные моменты конвенционализма были связаны с постановкой проблемы вненаучных критериев принятия тех или иных онтологических постулатов. Правда, сама эта проблема была лишь обозначена в конвенционализме. Отмечая относительность онтологических постулатов науки, он мало обращал внимания на преемственность в развитии их содержания и не доводил анализ до исследования механизмов, посредством которых осуществляется включение в культуру тех или иных фундаментальных научных представлений, а следовательно, и соглашение научного сообщества относительно их онтологического статуса. Эмпириокритицизм акцентировал внимание на другой идее — эмпирического обоснования научной онтологии. Он считал, что редукция фундаментальных научных абстракций к наблюдениям может быть критерием разделения конструктивных научных абстракций и гипостазированных объектов. А. Эйнштейн в своих поисках решения парадоксов электродинамики использовал некоторые из этих идей и подходов. Но он не просто заимствовал их в готовом виде, а выделял в них конструктивные моменты, переосмысливал их в соответствии с новыми ситуациями развития физики... <...> Научные революции возможны не только как результат внутридисциплинарного развития, когда в сферу исследования включаются новые типы объектов, освоение которых требует изменения оснований научной дисциплины. Они возможны также благодаря междисциплинарным взаимодействиям, основанным на «парадигмальных прививках» — переносе представлений специальной научной картины мира, а также идеалов и норм исследования из одной научной дисциплины в другую. Такие трансплантации способны вызвать преобразования оснований науки без обнаружения парадоксов и кризисных ситуаций, связанных с ее внутренним развитием. Новая картина исследуемой реальности (дисциплинарная онтология) и новые нормы исследования, возникающие в результате парадигмальных прививок, открывают иное, чем прежде поле научных проблем, стимулируют открытие явлений и законов, которые до «парадигмальной прививки» вообще не попадали в сферу научного поиска. В принципе этот путь научных революций не был описан с достаточной глубиной ни Т. Куном, ни другими исследователями в западной философии науки. Между тем он является ключевым для понимания процессов возникновения и развития многих научных дисциплин. Более того, вне учета особенностей этого пути, основанного на парадигмальных трансплантациях, нельзя понять той великой научной революции, которая была связана с формированием дисциплинарно организованной науки. Большинство наук, которые мы сегодня рассматриваем в качестве классических дисциплин, — биология, химия, технические и социальные науки, — имеют корни в глубокой древности. Историческое развитие знания накапливало факты об отдельных особенностях исследуемых в них объектах. Но систематизация фактов и их объяснение длительное время осуществлялись посредством натурфилософских схем. После того как возникла первая теоретически оформленная область научного знания — физика, а механическая картина мира приобрела статус универсальной научной онтологии, начался особый этап истории наук. В большинстве из них предпринимались попытки применить для объяснения фактов принципы и идеи механической картины мира. Механическая картина мира, хотя она и сформировалась в рамках физического исследования, в эту историческую эпоху функционировала и как естественнонаучная, и как общенаучная картина мира. Обоснованная философскими установками механистического материализма, она задавала ориентиры не только для физиков, но и для ученых, работающих в других областях научного познания. Неудивительно, что стратегии исследований в этих областях формировались под непосредственным воздействием идей механической картины мира. Весьма показательным примером в этом отношении может служить развитие химии рассматриваемого исторического периода <...> Функционирование механической картины мира как исследовательской программы прослеживается не только на материале взаимодействия химии и физики. Аналогичный механизм развития научных знаний может быть обнаружен и при анализе отношений между физикой и биологией на этапе дисциплинарного естествознания <...> Таким образом, можно обозначить важную особенность функционирования механической картины мира в качестве фундаментальной исследовательской программы науки XVIII века — синтез знаний, осуществляемый в ее рамках, был связан с редукцией различного рода процессов и явлений к механическим. Правомерность этой редукции обосновывалась всей системой Однако по мере экспансии механической картины мира во все новые предметные области наука все чаще сталкивалась с необходимостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической картины мира. К концу XVIII — началу XIX века стала складываться новая ситуация, приведшая к становлению дисциплинарного естествознания, в рамках которого научная картина мира приобретала особые характеристики и функциональные признаки. Это была революция в науке, связанная с перестройкой ее оснований, появлением новых форм ее институциональной организации и ее новых функций в динамике социальной жизни. Историю химии, биологии, технических и социальных наук этого исторического периода нельзя понять, если не учитывать «парадигмальных прививок», которые были связаны с экспансией механической картины мира на новые предметные области... <...> Все эти обменные процессы парадигмальными установками, понятиями и методами между различными науками предполагают, что должно существовать некоторое обобщенное видение предметных областей каждой из наук, видение, которое позволяет сравнивать различные картины исследуемой реальности, находить в них общие блоки и идентифицировать их, рассматривая как одну и ту же реальность. Такое видение определяет общенаучная картина мира. Она интегрирует представления о предметах различных наук, формируя на основе их достижений целостный образ Вселенной, включающий представления о неорганическом, органическом и социальном мире и их связях. Именно эта картина позволяет установить сходство предметных областей различных наук, отождествить различные представления как видение одного и того же объекта или связей объектов, и тем самым обосновать трансляцию знаний из одной науки в другую... Библиография Ахутин А. В. Понятие «природа» в античности и в Новое время. М., 1988 Кирсанов В. С. Научные революции XVII в. М., 1987 Косарева Л. М. Социокультурный генезис науки Нового времени. М., 1989 Косарева Л. М. Рождение науки Нового времени из духа культуры. М., 1997 Кун Т. Структура научных революций. М., 1975 Лакатос И. История науки и ее реконструкции / Структура и развитие науки. М., 1978 Научные революции в динамике культуры. Минск,1987 Современная философия науки: Знание, рациональность, ценности в трудах мыслителей запада / Под ред. А. А. Печенкина. М., 1996 Степин В. С. Философская антропология и философия науки. М., 1992 Степин В. С. Теоретическое знание. М., 1999 Сто лет квантовой теории: история, физика, философия. М., 2002 Традиции и революции в истории науки. М., 1991 Cohen I. Bernard. Newtonian revolution. Cambridge, 1980 Тема № 334 Эфир 24.12.2003 Хронометраж 42:28 |
|||||||