|
gordon0030@yandex.ru |
||||||
Архив выпусков | Участники | |||||||
Физика и свобода воли |
↓№ 127↑ 27.08.2002 52:00 | ||||||
Существует ли в мире предопределенность? Как связаны свобода и ответственность? Почему живое способно к усложнению и развитию, а неживое только лишь к устойчивым формам? Как связано творчество (появление нового) и процесс эволюции? О принципах устойчивого неравновесия и квантовой механики доктор Участники: Борис Георгиевич Режабек — кандидат биологических наук, академик Международной Академии экологии и безопасности жизнедеятельности, председатель Северокавказского отдела Международного экологического фонда Полищук Ростислав Феофанович — доктор Вопросы для дискуссии: • Существует ли в мире предопределенность? • Чем связаны свобода и ответственность? • Принципы устойчивого неравновесия и квантовая механика. • Что отличает живое от неживого? • Если детерминизм — идея восточных философий, то свобода — принцип христианской. • Почему живое способно к усложнению и развитию, а неживое только лишь к устойчивым формам? • Как связано творчество (появление нового) и процесс эволюции? Материалы к программе: Из статьи «Развитие и современное состояние представлений о биологических усилителях». Биологическое усиление слабых сигналов рассматривается, как фундаментальное свойство живых существ, тесно связанное с «принципом устойчивого неравновесия» Э. Бауэра. Наличие избытка свободной энергии в клеточных структурах позволяет усиливать принципиально индетерминированные результаты коллапса волновых функций компонент живой клетки. Этот феномен на макроуровне проявляется, как «свободная воля» живых существ. Биологическое усиление — способность живых существ воспринимать и использовать в качестве сигналов, крайне слабые воздействия (химические, акустические или электромагнитные) — является фундаментальным фактом, тесно связанным с природой качественной специфики живого в отличие от неживого. Вопрос о том, в какой мере представления и модели современной физики способны описать эту специфику, был в течение всего ХХ века предметом серьёзных размышлений и острых дискуссий физиков и философов. Попытка защититься от Сциллы «физического редукционизма» и одновременно спастись от Харибды «витализма» с помощью «системного подхода», весьма популярного в Нильс Бор неоднократно подчёркивал, что живым организмам, как и квантовым объектам, присуще качество ЦЕЛОСТНОСТИ, исчезающее при вмешательстве наблюдателя в ход жизненного процесса. С этой точки зрения, наблюдатель в биологии — хирург, гистолог, цитолог, «молекулярный биолог», — расчленяя живое на интересующие его элементы, имеет далее дело уже только с этими элементами, теряя в рамках данного подхода другие свойства объекта. Это, конечно, не умаляет ценности аналитического подхода для познания мира и создания основы для теоретических и практических приложений, но заставляет относиться к его возможностям более ответственно. Сказанное касается и оценки возможностей современной физики, опирающейся на идею о том, что большую часть феноменологически наблюдаемых и измеряемых свойств объектов можно понять, исходя из представления о мире как системе частиц и полей, подчиняющихся фундаментальным законам взаимодействия. Эта, базовая для физики, картина мира, опирающаяся на представление о «материальных точках» и силах притяжения между ними, вошла в золотой фонд науки постепенно. Первым шагом был впечатляющий успех теории Ньютона, взявшего в качестве «точек» планеты, в астрономии. Следующим шагом стала философская конструкция Лейбница, чьи представления о мире как системе автономных точек — «монад» дали основу для нового типа мировоззрения. В следующем, XVIII веке, возможность рассматривать весь видимый мир как систему точек (не имеющих протяженности!), из которых возникают сложные структуры благодаря уравновешиванию сил притяжения и отталкивания, была полностью осознана замечательным мыслителем Р. И. Бошковичем (1711–1787). Подробное профессиональное обсуждение попыток объяснения коллапса в квантовой механике и связи его с проблемой «свободы воли» можно найти в работе Б. Б. Кадомцева. Он, в частности, пишет: «...свобода воли является имманентным, т. е. внутренне присущим свойством всего мира. Только на основе этого исходного положения можно уйти от бессмысленного, полностью детерминированного механистического мира к миру живому и развивающемуся». В макромире мы имеем дело с телами, появившимися в результате того, что атомы, соединяясь друг с другом в соответствии со свойствами своих «электронных облаков», порождают молекулы и надмолекулярные структуры, в том числе и такие «шедевры по линии Господней квантовой механики» (Шредингер), как белки, нуклеиновые кислоты и восхитительные Ясное понимание тех пределов, в которых можно с полной ответственностью применять механические представления о компонентах клетки, вплоть до представлений о ферментах как «молекулярных машинах», крайне важно. Оно не позволяет мысли рассеяться в туманных гипотезах и представлениях, и определяет уровень, на котором сама природа делает невозможным применение моделей типа точки, движущейся по траектории. Точное знание этих пределов является практически важным для бурно развивающихся в наши дни «нанотехнологий». Изобретение сканирующих туннельных С другой стороны, определение этого уровня даёт физический ориентир для подхода к пониманию связи «свободной воли» живых существ с принципиальной неопределимостью «результата выбора» в процессе коллапса волновой функции. Идея о том, что квантовые свойства микрочастиц Фраза Дирака «Электрон летит, куда хочет — у него свободная воля», и близкие по смыслу высказывания Гейзенберга, Бора, Шредингера того же рода вызывали бурное неприятие советских Эта проблема, конечно, не могла не волновать физиков. Задолго до создания квантовой механики о ней размышлял отец поэта Андрея Белого, Считается, что «молекулярная революция» в биологии началась в 1953 г. с открытием двойной спирали Уотсоном и Криком. На самом деле она началась одновременно с победой атомистического мировоззрения в физике. Формально можно считать её стартом доклад А. А. Колли 1.1.1893 года, а первым «молекулярным биологом» — Н. К. Кольцова, высказавшего в своих работах идею о том, что носителями наследственности могут быть макромолекулы, способные создавать чисто химическим путём свои молекулярные копии. Его талантливый ученик Н. В. Выполнив серию блестящих работ на фагах, увенчанных Нобелевской премией 1969 года, Дельбрюк направил усилия в область, где он надеялся обнаружить новые физические принципы, необходимые для построения «физиологии преобразователей»: «В недрах физиологии органов чувств в широком смысле слова таится, правда, в ещё совершенно зачаточном состоянии, важнейшая наука — физиология преобразователей, наука о превращении сигнала, поступающего извне, в первый „интересный“ выходной сигнал». Избранный им объект — спорангиеносец гриба Phycomyces «обладает исключительной чувствительностью к свету, к действию силы тяжести, к растяжению и к некоему раздражителю, который мы считаем обонятельным». Однако на этом участке фронта прорыва в область «новой физики» не произошло. Первое понимание молекулярной природы биологического усиления пришло вместе с детальным изучением специализированных «молекулярных конструкций» — рецепторных комплексов мембран чувствительных клеток — фото, хемо-, термо- и механорецепторов. Этим вопросам посвящены сегодня тысячи статей, десятки конференций и специальные журналы. В общем картина событий, происходящих после основного акта, имеющего квантовую природу — например, поглощения фотона молекулой родопсина, приводящего к конформационному изменению (переходу в активированную форму) — выглядит так: «активированная форма (метародопсин MRh1) взаимодействует с Коэффициент усиления в этом процессе нетрудно оценить. При величине генераторного потенциала (изменения потенциала мембраны) 10 Мв, величине потенциала покоя 100 Мв изменение энергии мембраны составляет 105 Эв, а энергия исходного кванта имеет порядок 1 Эв. Таким образом, уже на уровне рецепторной клетки клетки усиление достигает 105. То, что глаз способен реагировать уже на одиночные фотоны, было чётко доказано ещё в хрестоматийных опытах С. И. Вавилова. К сожалению, остаются до сих пор практически не исследованными механизмы «митогенетических лучей» Гурвича и «зеркального цитопатического эффекта» Казначеева, Шурина и Михайловой, где также идёт речь о сигнальной роли отдельных фотонов в жизнедеятельности клетки. Вокруг этих феноменов велись одно время достаточно жаркие дискуссии, но это не уменьшает интереса к ним. Стоит привести мнение о «митогенетических лучах» Другим типом биологического усиления, не связанным с механизмами Экспериментальным изучением эффектов биологического усиления слабых электромагнитных полей в низкочастотной области занимались Р. Эйди, Ю. А. Холодов и др. Большое число исследований и ряд специальных конференций связан с «резонансными» эффектами в области миллиметровых волн, начало изучения которых связано с группой Н. И. Девяткова в НИИ «Исток» и ИРЭ АН СССР. На базе этих работ возникло новое направление в медицине — Подойдём к проблеме биологического усиления с общесистемной точки зрения, оставляя в области специальных исследований изучение конкретных деталей устройства усилителей. Сразу же выявляется очень важный с точки зрения теоретической биологии момент: биологическое усиление связано с главным свойством живых систем — «принципом устойчивого неравновесия» Э. Бауэра, согласно которому «все и только живые системы никогда не находятся в равновесии и исполняют за счёт своей свободной энергии работу против равновесия, требуемого законами физики и химии при существующих внешних условиях». Это положение, по нашему убеждению, является основным принципом теоретической биологии, без которого два других фундаментальных положения — эволюционная концепция и принцип комплиментарной редупликации наследственного кода не в состоянии описать специфику живого состояния (хотя в большинстве учебников и написано обратное). Сам Бауэр был уверен, что из принципа устойчивого неравновесия можно вывести как следствия способность живой материи размножаться, реагировать на внешние сигналы (раздражимость) и усовершенствовать свои структуры в процессе эволюции. С нашей точки зрения особенно важно подчеркнуть, что этот принцип является и главной предпосылкой возможности реализовать индетерминированный результат «выбора» на микроуровне в макроскопическую поведенческую реакцию, т. е., в отличие от тел неживой природы, реагировать «активно», с участием «свободной воли» уже на клеточном уровне. Одним из базовых положений квантовой механики является представление о том, что процессы микромира могут стать доступными макроскопическому наблюдателю именно благодаря тому, что между микрообъектом и наблюдателем ставится в качестве посредствующего звена УСИЛИТЕЛЬНАЯ СИСТЕМА, обладающая избытком свободной энергии. В физике роль таких систем играют пересыщенный пар в камере Вильсона, избыток химической энергии в системе Библиография Бауэр Э. С. Теоретическая биология. Л., 1935. Блохинцев Д. И. Основы квантовой механики. М., 1949. Бор Н. Атомная физика и человеческое познание. М., 1961. Бугаев Н. В. О свободе воли. М., 1869. Гейзенберг В. Физические принципы квантовой теории. М.; Л., 1932. Дельбрюк М. Обновлённый взгляд физика на биологию//УФН. 1971. Т. 105. Коган А. Б., Наумов О. П., Режабек Б. Г. Чораян О. Г. Биологическая кибернетика. М., 1972. Поппер К. Р. Квантовая механика и раскол в физике. М., 1998. Режабек Б. Г. О поведении механорецепторного нейрона в условиях замыкания его искусственной обратной связью//Доклады АН СССР. М., 1970. Режабек Б. Г. Самонастройка в одиночной нервной клетке, как модель возможного поведения элемента самоорганизующихся нейронных ансамблей: Автореф. дис. канд. биол. наук. Ростов на Дону, 1970. Режабек Б. Г. Устойчивое неравновесие — основа избирательной чувствительности организма/Электромагнитные поля в биосфере. М., 1985. Т.2. Режабек Б. Г. Развитие и современное состояние представлений о биологических Томсон В. О власти одушевлённых существ над материей//Второе начало термодинамики. М.; Л., 1934. Умов Н. А. Эволюция мировоззрений в связи с учением Дарвина//Штерне К. Эволюция мира. М., 1908. Тема № 127 Эфир 27.08.2002 Хронометраж 52:00 |
|||||||