|
gordon0030@yandex.ru |
||||||
Архив выпусков | Участники | |||||||
Квантовая математика |
↓№ 157↑ 17.10.2002 40:00 | ||||||
Что характеризует «квантовую», или «некоммутативную», математику, которая на самом деле родилась вместе с квантовой механикой, но никто этого не заметил? Каким образом квантовая математика пыталась помирить двух великих физиков, да не смогла? О том, почему «настоящая» теорема отвечает не только на поставленный вопрос, но и на ряд еще не поставленных, — доктор Участник: Хелемский Александр Яковлевич — доктор Предварительный план беседы: • Необходимость нового математического аппарата после новых открытий физики. • Конец детерминистской картины мира; соотношение неопределенности. • Что такое «каноническое коммутационное соотношение» и зачем оно нужно? • Рождение квантовой математики из матричной механики Гейзенберга и волновой механики Шредингера. • Взаимоотношения математиков и физиков. • Значение математики фон Нойманна. • Квантовая математика после фон Нойманна. Материалы к программе: Из курса лекций А. Я. Хелемского по квантовой математике. Вот я произношу слова «квантовая математика»; сейчас это довольно значительная часть большой науки Математики, имеющая весьма расплывчатые границы; некоторые ученые и не подозревают, что занимаются квантовой математикой (на манер мольеровского мсье Журдена). Как вы догадались, квантовая математика — это одна из математических наук; на самом деле это значительная часть математики науки с довольно расплывчатыми границами. Раньше по большей части говорили не «квантовая», а «некоммутативная» математика, а многие и сейчас предпочитают это название. Таким образом, в нашем контексте «квантовая» и «некоммутативная» — это синонимы. <...> Назревшая проблема заключалась в том, что был нужен математический язык, описывающий новые физические открытия, которые разрушили идиллическую гармонию «ньютоновской» или, если угодно, «лапласовской» картины мира (ее квинтэссенция — это великий труд Лапласа «Изложение системы мира»). Условно назовем «лапласовскую» механику классической. Можно сказать, что, в конечном итоге, математический аппарат классической механики — это просто действительные числа, результат измерения той или иной физической величины. Чуть точнее, в основе этого аппарата находятся действительнозначные функции на множестве всех возможных состояний, которые каждому состоянию ставят в соответствие действительное число. Сам же результат измерения в классической механике понимается как приближенное значение некоего истинного значения — приближенное только потому, что наш измерительный прибор несовершенен — и, совершенствуя наши средства измерения, мы будем все более приближаться к этому «истинному» значению. И вот этот идиллический мир классической механики в начале ХХ века рухнул. Некая мистика, а может быть, указующий божий перст состоит в том, что в это же время, с громом августовских пушек 1914 года, рухнула идиллическая картина мира — то, что принято называть викторианским мироощущением: дескать, происходит непрерывный прогресс, и чем больше напридумают ученые, тем счастливей будет человечество. И там, и здесь — и в физике, и в общем развитии человечества — все оказалось куда сложнее, непредсказуемее, трагичнее. Но оставим судьбы человечества в целом; что же, собственно, произошло в физике? Оказалось, что точного значения наблюдаемой в данном состоянии просто не существует, а имеет смысл говорить только о вероятности того, что это значение находится в том или ином числовом промежутке; вот и конец детерминистской картины мира. Но для нас сейчас важнее всего не столько этот общий факт, сколько вот какая обнаруженная удивительная закономерность: две физических величины, вообще говоря, не могут быть одновременно измерены с как угодно большой степенью точности, и не вследствие несовершенства приборов, а потому, что это в принципе невозможно. Главный пример такого рода дает измерение двух физических величин, характеризующих движение частицы по прямой: речь идет о ее координате и о ее импульсе (= скорости, умноженной на массу). Как оказалось, наш мир устроен так, что при одновременном измерении координаты и импульса в любом возможном состоянии мы находимся «в плену» у неравенства, которое называется cоотношением неопределенности. А теперь смотрите: если Вы совершенствуете прибор, измеряющий координату, то, в силу соотношения неопределенности, результаты одновременного измерения Вами импульса необходимо становятся все менее точными, и наоборот. В В том гипотетическом математическом аппарате, который должен описывать эти странные законы квантовой механики, импульс и координата должны удовлетворять знаменитому ныне «каноническому коммутационному соотношению» (далее сокращенно ККС). Где мне найти такую песню? В середине Получились две конкретных модели квантовой механики — «матричная» Гейзенберга и «волновая» Шредингера. Гейзенберг предложил изображать координату не одним числом, а бесконечным набором чисел, зависящих от двух натуральных индексов. Его открытие тем более удивительно, что он сам — а это еще более поразительно! — матриц не знал. Но мы, умные задним числом, можем сказать, что на самом деле он взял алгебру матриц, но не конечного размера, а бесконечных вправо и вниз, и таких, что на каждой строке и на каждом столбце только конечное число элементов отлично от нуля. Какая же механика лучше, чьи пироги пышнее? Физики разделились на белых и красных или лучше, в духе Свифта, остроконечников и тупоконечников — одни за Гейзенберга, другие за Шредингера. Увы, и сами творцы начали писать друг о друге, что, дескать, «та теория произвела на меня удручающее впечатление», а то и круче... А между тем в математике уже более 10 лет было сделано открытие, которое подсказало бы этим выдающимся людям (знали бы они!), что предмета спора на самом деле нет. (Ну прямо как у Теорема, о которой пойдет речь, относится к жанру, возможно, самых красивых теорем в математике — теоремах об изоморфизме. (Это видовое понятие.) Попробуем объяснить на пальцах, что это за вид теорем. Пусть у нас есть два с виду совершенно различных объекта, как это обычно бывает, два множества, наделенные А что же у нас? Оказывается, при рассмотрении схемы Гейзенберга мы неизбежно приходим к рассмотрению некоторого конкретного линейного пространства, в котором — разрешите акустический эффект — его, Гейзенберга, матрицы «записывают неограниченные линейные операторы в этом пространстве». Так из матричной механики Гейзенберга и волновой механики Шредингера родилась единая «квантовая механика», использующая, как это стали говорить много лет спустя, аппарат квантовой математики. Между прочим — грустное замечание — это сейчас, на исходе века, мы воспринимаем подобное заявление как банальность, а тогда, в двадцатые, мысль о единстве обеих теорий оказалась отвергнутой обеими творцами; эту точку зрения, сейчас банальность, не приняли оба творца, и каждый остался при своем мнении, что «его механика лучше, а математики пусть говорят, что хотят». (Об этом я прочел в рецензии выдающегося математика и математического физика Ирвинга Сигала на книгу Алэна Конна «Некоммутативная геометрия» — пожалуй, самую модную книгу по современной математике последних лет; сам же Конн — еще один из главных героев наших рассказов, которому, как мы увидим, удалось завершить дело, начатое фон Нойманном. Так вот, говоря о столь странной, с позиций сегодняшнего дня, «несгибаемости», тот самый, филдсовский лауреат, о котором я еще надеюсь сказать несколько слов, Сигал меланхолично комментирует это приблизительно так: математику, сделавшему крупную работу по физике, нечего рассчитывать на понимание практических физиков, по крайней мере, в том же поколении. И вообще, раз такие минорные вещи пошли в нашем рассказе, уместно вспомнить, что говорил еще один великий физик — Макс Планк, предтеча Гейзенберга и Шредингера, о том, каким образом новые идеи в науке побеждают и становятся общепринятыми. Вовсе не потому, писал он, что крупные ученые, ранее отвергавшие, в силу естественного консерватизма, новые «сумасшедшие» теории, впоследствии прозревают. Просто, увы, идет естественная смена поколений, и старики просто уходят — а молодежь ведь всегда восприимчивее... А теперь, завершая это «беллетристическое» отступление, я хочу сказать несколько общих фраз о взаимоотношениях математиков и физиков. Когда они понимают друг друга и по возможности работают вместе, обе науки бурно развиваются и процветают. Когда нет, обеим плохо: математика лишается одного из мощнейших внешних импульсов к своему развитию, а физики, не получая адекватного языка для изложения своих теорий, в конце концов перестают понимать как друг друга, так и то, что они, в сущности, делают, и начинают мычать, как и подобает безъязыким существам. Вот даже я, будучи рядовым математиком, все более ощущаю недостаток знаний по современной (да и классической) физике. «А что же ты делал в молодые годы, когда мозги работали лучше? Вот тогда бы и учил!» А вот тогда, в шестидесятые, и достигал своего апогея тот самый разлад, который, в частности, выражался в том, что нас на мехмате так обучали физике, что привили если не отвращение, то полное равнодушие к предмету, приучили видеть в нем нечто вроде разновидности шаманизма, следующую ступень после (В это время на занятиях по философии мы слышали о критике исчисления бесконечно малых со стороны знаменитого епископа Беркли — критику, сыгравшую исключительно ценную роль в постановке этого исчисления на строгий математический базис. «Если вы верите в ваши бесконечно малые, — так приблизительно писал Беркли, — то уж тогда не должны сомневаться в святой Троице и непорочном зачатии, куда более, на мой взгляд, правдоподобных вещах»...) Но вот, наша затянувшаяся предыстория кончилась, и начинается история. В конце Этот математик — не кто иной, как фон Нойманн; кому и карты в руки, можем мы сказать после уже услышанного. Сейчас мы подробнее поговорим о нем, о том, что ему удалось сделать, и чего не удалось. Если математика спросят, кто самые великие представители его науки в последней четверти XIX — самом начале ХХ века, ответ очевиден: Давид Гильберт и Анри Пуанкаре. Все остальные либо явно разнятся в калибре, либо принадлежат уже другой эпохе (как, скажем, Риман). С той же частью нашего столетия, когда уже можно, хотя и с опаской, пытаться составлять табель о рангах и сравнивать достижения самых выдающихся ученых — давайте возьмем период с Если попросить назвать самого великого математика этой поры, человек смутится. А двух? Вот тогда, я убежден, 95% профессиональных математиков ответят: Джон фон Нойманн и Андрей Николаевич Колмогоров. Вопрос, кто из них лучше, столь же нелеп, как подобный же вопрос о Пушкине и Шекспире: «Оба лучше!» Кстати, если попросить назвать троих, вот тут уже начнутся разночтения: многие назовут И. М. Гельфанда, но многие — Германа Вейля, а иные — и Гротендика; это косвенно подтверждает Но насколько же разнится характер творчества этих двух гигантов! Фон Нойманн — это математический Моцарт (или Пушкин?). Все ему дается без всякого видимого напряжения, он жизнерадостен, артистичен, любит шутки, женщин, азартные игры... (Обосновавшись в Америке, он первым делом научился выигрывать в близлежащем казино, разработав соответствующую теорию, а потом всем ее объяснил — так что много не заработал, но шуму наделал.) Словом, любимец богов. Такие люди, как учат нас древние греки, умирают молодыми, вот он и умер 53 лет от роду, от рака. А Андрей Николаевич, хотя и прожил долго, был во многом, несмотря на внешнее благополучие, трагической фигурой. Но, обладая большим умом и склонностью к самоанализу, он себя прекрасно знал и выработал замечательное лекарство — спорт: уходил в походы, многочасовые лыжные прогулки и так приходил в себя. А потом все повторялось снова... Но вернемся к фон Нойманну; вот несколько биографических сведений. Он родился в декабре 1903 в Будапеште, втором городе (Не правда ли, полная противоположность Эйнштейну, которого как, как вы, наверное, слышали, даже отец утешал в детстве: «Не горюй, Альберт, не всем же быть профессорами...») Еще в детстве фон Нойманна заметили профессора Будапештского университета, и очень рано он стал считаться профессиональным математиком. Но когда ему было 15, семье пришлось бежать из Венгрии: там пришел к власти Бела Кун и воцарился красный террор; ясно, что грозило отцу. Семья переехала в Германию, где Иоганн приобрел уже международную известность и стал работать сперва в Берлине, а потом в Гамбурге. Но и там постепенно становилось все более неуютно: поднимал голову нацизм. В конце Канун переезда фон Нойманна в США, где он стал Джоном и таковым оставался всю свою дальнейшую жизнь, как раз и является нашей точкой отсчета. Именно тогда он и замыслил создать ту математику, на которой будут разговаривать квантовые механики. И действительно, здесь он во многом преуспел. Ему удалось создать систему аксиом, которая и по сей день остается в основе большинства приложений, хотя, как выяснилось, и не решила всех проблем. Для нашего рассказа важно то, что центральным понятием этой системы аксиом является то самое абстрактное гильбертово пространство — бесконечномерный аналог того трехмерного, где мы живем — о котором уже говорилось. А те примеры, о которых упоминалось, надо рассматривать как реализации этого абстрактного пространства, приспособленные для тех или иных конкретных задач (вспомните теорему Следующий шаг фон Нойманна: различным Эти алгебры, которые сейчас называются алгебрами фон Нойманна и которые я сейчас определю, как раз и являются одним из основных понятий квантовой математики и играют центральную роль в одном из главных разделов этой науки — квантовой теории вероятностей. Физические величины, они же наблюдаемые, соответствуют самосопряженным элементам этих алгебр; в каком смысле здесь понимается самосопряженность, мне также предстоит вскоре объяснить. К сожалению, у меня здесь нет возможности рассказать о том, какой математической процедуре соответствует измерение этих физических величин, но ее основная смысловая нагрузка — в том, что мы получаем не точное число, а лишь некое распределение вероятностей. Конец детерминизму и лапласовой картине мира! Введя свои алгебры, фон Нойманн поставил перед собой великую и, как мы теперь знаем, недостижимую цель: описать их всех с точностью до изоморфизма (отождествления, сохраняющего все имеющиеся в них структуры). Если бы ему удалось это сделать, то квантовая механика оказалась бы четко очерченной, не очень трудной и совершенно законченной наукой. Но Бог решил иначе — а сколь многообещающим было начало... Здесь уместно сделать отступление чисто «человеческого» характера. Как современники отнеслись к этой новой деятельности фон Нойманна? Думаете, с энтузиазмом? Как бы не так! Это сейчас, по прошествии добрых 70 лет, когда математика спросят «что сделал фон Нойманн?», он, не задумываясь, начнет с алгебр фон Нойманна. А тогда? Хотя фон Нойманну было 27 лет, он уже был всемирно известен, хотя великим его еще не называли (для этого и понадобились «его» алгебры и некоторые другие вещи). В Кстати, опять параллель с Колмогоровым. Что сделал Андрей Николаевич? Первый «импульс ответа»: как же! теорию вероятностей! Так вот, есть письмо Н. Н. Лузина — да, того самого знаменитого учителя доброй половины московской школы — к своему бывшему ученику Колмогорову, где он пишет примерно в таком духе: «Вам бы надо крупные научные проблемы решать, с Но подобное отношение современников для математики, увы, скорее типично, и особенно это касается вопроса о возможных приложениях. Вот что пишет сам фон Нойманн (смотрите посвященный ему двухтомник в серии «Классики науки», 1986 г.). «Большая часть математики, которая стала полезной, развивалась без всякого намерения быть полезной и в ситуации, где никто, возможно, и не знал, в какой области она станет полезной; и не было даже никаких указаний на то, что это ...А как же догадаться, что данная совершенно абстрактная работа пригодится? Опыт показывает, что здесь почти безотказно действует эстетический критерий: красиво — тогда наверняка пригодится, не нам, так детям нашим! На этом фоне особенно грустно читать близорукие статьи, скажем, в «Поиске», где нас поучают, что фундаментальные науки должны ориентироваться на скорейшие, сразу обозримые, приложения (мне это напоминает статьи о партийности искусства...) Снова вернемся к фон Нойманну. Он чувствовал свою правоту и уверенно шел своей дорогой. Итак, одно время фон Нойманн думал, что схватит Бога за бороду — что В 30 г. им была доказана ныне знаменитая теорема, которую я даже сформулирую, ибо это первая по времени теорема квантовой математики. Она называется «теорема фон Нойманна о двойном коммутанте». Этот результат, как бывает, содержит нечто большее, чем просто математическое утверждение. Ведь с его позиций можно заявить, что произвольная алгебра фон Нойманна должна рассматриваться как некоммутативное, или квантовое, обобщение алгебры измеримых функций, то есть что это «некоммутативная теория вероятностей». Вот, казалось бы, пустой набор слов, чуть ли не словоблудие Как уже говорилось на пленарной лекции, в Теорема А теперь — о самой теореме. В сущности, Гельфанд и Наймарк доказали две всемирно известных теоремы. Обычно люди (как и я в предыдущем разговоре) имеют в виду вторую (о некоммутативных алгебрах), но бывает, что и первую (о коммутативных алгебрах и непрерывных функциях); эта первая, представляя огромный самостоятельный интерес — мы это увидим — играет для второй роль важного подготовительного утверждения. Я сперва произнесу нечто вроде заклинания, а потом, после этого акустического эффекта, разъясню более точно, что же было доказано. А именно, если перефразировать хорошо известное в этих горах утверждение пророка Мухаммеда о единственности Бога, то применительно к открытиям Гельфанда и Наймарка можно провозгласить: Первая теорема: нет коммутативных Библиография Нейман И. Математические основы квантовой механики. М., 1964. Нейман Д. Избранные труды по функциональному анализу. Т. 1–2. М., 1987. Мерфи Дж. Хелемский А. Я. Лекции и упражнения по функциональному анализу. М., 1993. Connes A. Noncommutative geometry. London, 1990. Doran R. S. (ed.). Emch G. G. Mathematical and conceptual foundations of Jones V. F. R. Subfactors and Knots. AMS, 1991. Helemskii A. Ya. An elementary realization of a Johnson B. E. Presidential address. Macrae N. John von Neumann: the scientific genius. AMS, 1991. Segal I. E. Noncommutative geometry, by Alain Connes (review)//Bull. Amer. Math. 1966. Soc., 33. № 4. Тема № 157 Эфир 17.10.2002 Хронометраж 40:00 |
|||||||