|
gordon0030@yandex.ru |
||||||
Архив выпусков | Участники | |||||||
Число, время, свет |
↓№ 313↑ 04.11.2003 48:17 | ||||||
Стенограмма эфира Существует ли единый «Код Природы»? Может ли число порождать свет, а свет — материю? В чем суть основных принципов «неопифагорейского» подхода к построению физических теорий? О «реке времени» и частицах как точках «сгущения» первичных световых потоков — физик Владимир Кассандров. Кассандров Владимир Всеволодович — кандидат Обзор темы Глубину темы, лишь в общих чертах обрисованной в обзоре, составленном на основе работ В. В. Кассандрова, хочется подчеркнуть высказываниями великих ученых: «Может ли человеческий разум безо всякого опыта, путем только одного размышления понять свойства реальных вещей?» «У Творца не было выбора при сотворении Мира». «Мы хотим не только знать, как устроена природа (и как происходят природные явления), но и, по возможности, узнать, почему Природа является именно такой, а не другой». (А. Эйнштейн). «Поразительная простота обобщения классических физических теорий... по существу основана... на введении условного символа i, равного квадратному корню из минус единицы». (Н. Бор). «Изучение целых чисел в современной математике неразрывным образом связано с теорией функции комплексного переменного, которая... должна стать основой будущей физики». (П. Дирак). Владимир Кассандров обращает свое внимание на новые взаимоотношения математики с естественными науками, прежде всего — с фундаментальной теоретической физикой. Эти отношения, возникающие на глазах современников, до конца еще не осознаны ни чистыми математиками, ни теоретиками, ни философами науки. По существу речь идет о (понимаемой в современном смысле) идеологии неопифагореизма, в которой математика из «служанки», понукаемой потребностями естественных наук, становится их «госпожой», диктующей истинный вид законов природы и расшифровывающей происхождение и смысл (алгебраический, геометрический, топологический) уже открытых законов. Яркие представители этого направления, испытавшего расцвет в эпоху античности (Пифагор, Платон, Плотин), на самом деле присутствовали во все исторические периоды (У. Гамильтон, В. Клиффорд, А. Эддингтон, Г. Вейль, П. Дирак и (во второй половине жизни) А. Эйнштейн). Взгляды этих ученых не являлись господствующими в естественнонаучной среде и в философии: напротив, все основные достижения последних столетий скорее можно связать с парадигмой научного познания Галилея — Ньютона (опыт — гипотеза — опыт — закон — опыт), и нашедшей свое логическое завершение в Сегодня пришло время «собирать камни». Виднейшие теоретики после более чем полувекового перерыва вновь обращаются к основаниям физики, пытаясь из самых общих соображений определить и понять истинную размерность В математике, с другой стороны, все чаще встречаются взгляды на абстрактные структуры, естественно возникающие в рамках различных формализмов, не как на некую «игру ума», а как на объективные сущности, которые имеют прямое отношение к реальности окружающего мира. Об изменениях отношения взгляда математиков на собственную деятельность и на отношения с естественными науками свидетельствует, в частности, и известная полемика В. И. Арнольда с представителями «школы Н. Бурбаки». Однако, несмотря на несколько более демократичную и творческую обстановку, сложившуюся в современной физике и математике, кардинального прорыва к новому пониманию природы пока не просматривается. Ныне господствующие в физике представления и парадигмы возведены в догму и считаются не подлежащими радикальному пересмотру, а лишь уточнению при непременном условии соблюдения т. н. принципа соответствия, т. е. полного восстановления прежней теории из новой в результате некоторой процедуры предельного перехода. Лишь единицы из ведущих Сейчас полностью отсутствует, по мнению В. Кассандрова, понимание того факта, что современные, общепринятые представления, концепции и уравнения в принципе не могут быть достоверны, поскольку получены естествоиспытателями в результате своего рода «мозгового штурма», в процессе поиска наилучшего описания некоторой совокупности уже установленных на опыте фактов. Вряд ли при этом ответ может быть единственным (поскольку на самом деле неизвестно, при каких условиях, «связях» ищется решение «задачи оптимизации»). Только гениальная интуиция великих мыслителей прошлого позволяет надеяться, что выработанный ими язык фундаментальной физики может в Интересно отметить, что сами Психологические аспекты отрицания большинством научного сообщества возможности полной ревизии сложившихся представлений вполне понятны и в известной мере являются охранительными. В. Кассандров считает, что объективно эти взгляды именно сейчас все заметнее начинают играть реакционную роль, тормозя развитие радикально новых подходов. Дело в том, что в настоящее время внутри самой науки (как математики, так и теоретической физики) накоплен огромный потенциал идей и методов, который может оказаться основой ее внутренней революции. Физика, используя богатство новых структур, открытых современной математикой (теорию особенностей, алгебраическую геометрию и топологию, нелинейную динамику и синергетику и др.), готова совершить качественный скачок и превратиться из описательной, «констатирующей» науки в своего рода Новую Метафизику. Эта Метафизика объяснит происхождение и смысл основных структур и объектов, составляющих физическую реальность. Манифестом этого нового направления развития физики можно считать известные слова А. Эйнштейна: «... мы хотим не только знать, как устроена природа (и как происходят природные явления), но и по возможности достичь цели, может быть утопической и дерзкой на вид, — узнать, почему природа является именно такой, а не другой». Интересно, что для автора, получившего «классическое» университетское образование, столь радикальная концепция ранее не являлась близкой. Постепенный переход к ней произошел после знакомства со структурами типа исключительных алгебр (типа алгебр кватернионов и октонионов), фрактальными отображениями, теорией особенностей и исключительными простыми группами. Богатство возможностей и внутренняя красота этих и других аналогичных структур поражают и составляют разительный контраст с теми, уже порядком «заезженными» (а часто и математически некорректными) процедурами (вариационная задача, коммутационные соотношения, интегрирование по путям), которые использует современная теоретическая физика (причем использует непоследовательно, смешивая классические геометрические и формальные квантовые представления). Сам факт существования таких исключительных абстрактных структур заставляет задуматься, не они ли лежат в основе Бытия, не в их ли внутренних свойствах закодирован алгоритм эволюции и cвойства Вселенной, вплоть до самих понятий времени, материи и сознания? В 1980 году В. Кассандровым было предложено определение дифференцируемости функций кватернионного переменного, явно (и, Совокупность этих и других интересных внутренних свойств первичных условий ОКР наводила на естественную мысль попытаться рассматривать эти уравнения как основу некоторой единой алгебраической теории поля. Программа построения такой теории, получившей название алгебродинамики, и предварительные результаты реализации такого подхода в алгебре B были представлены. Получилась необычная геометрическая картина физического Интересно рассмотреть представления о времени возникающие при рассмотрении фундаментальных световых конгруэнций, и связь этих представлений с работами других авторов. Здесь фундаментальную роль играет твисторная структура уравнений Алгебраическая теория поля на основе Как ни странно, оказалось, что рассматриваемые Исключительно важную роль имеет обнаруженная связь уравнений Редукция уравнений ОКР к алгебраическим уравнениям позволила простым образом генерировать достаточно сложные их решения, а также и сопоставляемые им решения известных уравнений поля, в том числе уравнений Максвелла, Эйнштейна и Такая общая для всех основных полей, определяемых решениями ОКР, сингулярная структура в случае ее ограниченности в Еще одним определяющим свойством исходных уравнений ОКР является их существенная переопределенность. Как следствие этого, далеко не каждое решение уравнений Максвелла или Отметим, что идея объяснить дискретный спектр характеристик частиц как следствие переопределенности и нелинейности описывающих их классических уравнений поля принадлежит, судя по всему, А. Эйнштейну. Эта идея получила название сверхпричинности. В рассматриваемом подходе концепция сверх причинности проявляется не только в квантованности значений электрического заряда, но и в нетривиальной динамике сингулярных частице подобных образований, моделирующей их взаимодействие и взаимопревращения. Действительно, несмотря на тождественное выполнение линейных уравнений Максвелла во всем Фундаментальное (стационарное, Примеры нетривиальной топологической структуры и динамики сингулярных частице подобных образований обсуждались в научных работах. Помимо фундаментального «керровского» было найдено, в частности, бисингулярное решение с В завершение краткого обзора основных полученных к настоящему времени результатов подчеркнем еще раз, что все они являются непосредственным следствием одной лишь структуры уравнений а) новый вид калибровочной инвариантности, имеющей место для уравнений ОКР (т.н. «слабой», с калибровочным параметром, зависящим от координат лишь через компоненты преобразуемого решения); б) новую форму представления уравнений Максвелла через т. н. условия «комплексной самодуальности», сводящие их решение к решению в) новую концепцию источников физических полей, связанную с рассмотрением сингулярностей полей как точек ветвления отвечающих им (производящих) многозначных комплексных функций и обобщающую принятую в настоящее время концепцию Все эти неожиданные и интересные физические представления в алгебродинамике не привносятся извне, а генерируются внутренними свойствами самой абстрактной математической структуры, положенной в основу рассмотрения. Мы вернемся к рассмотрению этих вопросов в заключительном разделе, а теперь перейдем к несколько более подробному обсуждению представлений о свете и материи и времени, возникающих при анализе свойств и решений уравнений Вообще в физике уже почти 100 лет имеет место парадоксальная ситуация, когда с одной стороны, основным объектом исследования остается модель точечной Попытки рассматривать частицы как особенности решений дифференциальных уравнений, в том числе уравнений Максвелла, предпринимались еще в начале века, в частности Г. Бейтманом. Л. де Бройль пытался дать классическое объяснение Именно на каустиках, т. е. «протяженных фокусах», обращается в бесконечность напряженность электромагнитного поля, и, таким образом, именно (ограниченные в пространстве) каустики являются моделью частиц в данном подходе, обладая квантованным электрическим зарядом и динамикой, определяемой видом регулярной части соответствующей световой конгруенции. Естественно предположить, что в таком случае известная классификация каустик как особенностей дифференцируемых отображений может иметь непосредственное отношение к классификации элементарных частиц! На самом деле представление о зарядах как о фокальных точках некоторых световых конгруенций возникает уже в классической электродинамике. Действительно, поле движущегося по некоторой траектории точечного заряда (потенциалы Эта конструкция допускает важное обобщение. Оказывается, что большое число физически важных решений возникает при формальном рассмотрении точечного заряда, движущегося по некоторой комплексной кривой в полном комплексифицированном пространстве Минковского CM. Комплексный световой конус «излучения» такого заряда образует на вещественном срезе CM — физическом Основные принципы «неопифагорейского» подхода к построению физических теорий. Чисто абстрактная математическая структура (в данном конкретном случае — структура «аналитических» функций в алгебре комплексных кватернионов B) однозначно ведет к представлениям о некотором мире локализованных (в «предпространстве») и изменяющихся (в «предвремени») сингулярных частице подобных образований. Во многих отношениях этот виртуальный мир, целиком закодированный в единственном инвариантном Однако, отношения между этими структурами и их внутренние связи оказываются далеко не тождественными известным из формализма квантовой теории и ОТО, а во многих случаях представляются совершенно неожиданными, математически красивыми и более адекватными наблюдаемой физике (как, например, в случае естественно возникающего квантования электрического заряда). Тем самым, внутренняя структура исходных уравнений, казалось бы, не предполагающая никакой связи с физической реальностью, открывает совершенно новые возможности для ее описания даже в рамках общепринятой гносеологической парадигмы. Пока что, разумеется, нет оснований, считать, что рассмотренная модель — это «истина в последней инстанции», дающая полное и описание физической реальности на основе единого общего принципа, т. е. что, иначе говоря, наш Мир есть 1. В основе Природы лежит некоторый первичный Принцип (Код, Алгоритм, Метазакон), имеющий чисто абстрактное математическое происхождение. Все известные т. н. «законы природы», полученные из эксперимента, либо являются прямыми следствиями этого единственного исходного принципа либо вообще не имеют отношения к правильному описанию природы и лишь случайно приближенно выполняются при определенных условиях. 2. В современных условиях новые эксперименты мало, что могут добавить к нашему пониманию окружающего мира. Фундаментальные законы природы следует изучать не в лаборатории (в экспериментах с частицами), а главным образом «на бумаге» (ставя «эксперименты» над самими математическими структурами (В. И. Арнольд)). При этом, может оказаться, что господствующие физические теории и представления (даже такие красивые, как ОТО) не имеют никакого отношения к реальности, и о принципе соответствия в принятом в настоящее время смысле вообще придется забыть. 3. В основании первичного Принципа и, как следствие, устройства Вселенной лежит некоторая объективно существующая математическая структура (скорее всего, числовая или/и логическая), исключительная по своим внутренним свойствам. Вселенная представляет собой своего рода реализацию («материализацию») этой первичной структуры. 4. Каждая математическая структура является в 5. Одним из признаков уникальности и невырожденности первичной структуры является, 6. При выборе кандидата на роль первичной структуры нельзя ограничиваться известным и используемым в физике набором (дифференциальные уравнения, расслоенные пространства, риманова геометрия и т. п.). Не следует навязывать природе своих физических представлений 7. Изначально имеет смысл предполагать также, что первичная физика должна быть существенно нелокальной, и именно глобальные свойства 8. После выбора кандидата на роль первичной структуры ее анализ, прочтение ее свойств должно проводиться жестким дедуктивным путем и, в частности, исключить всякую возможность введения в схему феноменологических, подгоночных параметров для лучшего описания наблюдаемых закономерностей. В противном случае мы никогда не поймем истинный язык Природы! Математические свойства положенной в основу первичной структуры должны быть прослежены до такой стадии, когда физическая интерпретация возникающих абстрактных структур и характеристических уравнений станет самоочевидной (хотя, возможно, и не единственной). При отсутствии возможности естественной идентификации внутренних свойств структуры с физической реальностью следует не «улучшать» или «добавлять», а полностью менять исходную структуру и повторять исследования с другим кандидатом. Предлагаемый в работах В. В. Кассандрова радикально новый подход к построению физических теорий на первых порах может оказаться практически малоэффективным и неблагодарным. Действительно, даже «угадав» исключительную первичную структуру, положенную в основу мироздания (а, скорее всего, лишь приблизившись к ее пониманию), трудно надеяться сразу же воспроизвести всю эффективную феноменологию описания природы, которая была создана (и продолжает созидаться, в том числе в рамках парадигмы суперструн) поколениями выдающихся ученых, в частности, понять происхождение Стандартной модели. Трудно сразу же вывести из абстрактной схемы превосходящую ее по эффективности описания альтернативную модель. Не следует, поэтому, на первых порах и требовать от подобных общих подходов Библиография Арнольд В. И. Теория катастроф. М., 1990 Арнольд В. И. Математика и физика: мать и дитя или сестры?//Успехи физических наук. 1999. Т. 169. № 12 Владимиров Ю. С. Метафизика. М., 2002 Дирак П. А. М. Отношение между математикой и физикой//П. А. М. Дирак. К созданию квантовой теории поля/Под ред. Б. В. Медведева. М., 1990 Ефремов А. П. Кватернионный подход к описанию относительного движения/К Ефремов А. П. Основы кватернионной теории относительности. Кинематика Инерциальных систем отсчета//Вестник РУДН. Сер. Физика. 1995. № 3. Вып. 1 Кассандров В. В. Алгебраическая структура Кассандров В. В. Алгебродинамика: кватернионы, твисторы, частицы//Вестник РУДН. Сер. Физика. 2000. № 8. Вып. 1 Кассандров В. В. Число, время, свет//Математика и практика. Математика и культура/Под ред. М. Ю. Симакова. М., 2001. Вып. 2 Кулаков Ю. И. Элементы теории физических структур. Новосибирск, 1968 Симаков М. Ю. Пифагорейская программа. М., 1997 Уилер Дж. Предгеометрия как исчисление высказываний/Ч. Мизнер, К. Торн, Дж. Уилер. Гравитация. Бишкек, 1997. Т. 3 Эйнштейн А. Физика и реальность. М., 1965 Эйнштейн А. Собр. Соч.: В Eddington A. S. Fundamental Theory. N.Y., 1946 Kassandrov V. V. Conformal mappings, hyperanaliticity and physical fields // Acta Applicandae Mathematicae. 1998. V. 50 Penrose R. Shadows of the Mind. Oxford, 1994 http://www.chronos.msu.ru/ Тема № 313 Эфир 04.11.2003 Хронометраж 48:17 |
|||||||